首页> 外文期刊>Computing and informatics >AUTOMATIC FINDING OF GOOD CLASSIFIERS FOLLOWING A BIOLOGICALLY INSPIRED METAPHOR
【24h】

AUTOMATIC FINDING OF GOOD CLASSIFIERS FOLLOWING A BIOLOGICALLY INSPIRED METAPHOR

机译:在生物启发的隐喻之后自动找到良好的分类器

获取原文
获取原文并翻译 | 示例

摘要

The design of nearest neighbour classifiers can be seen as the partitioning of the whole domain in different regions that can be directly mapped to a class. The definition of the limits of these regions is the goal of any nearest neighbour based algorithm. These limits can be described by the location and class of a reduced set of prototypes and the nearest neighbour rule. The nearest neighbour rule can be defined by any distance metric, while the set of prototypes is the matter of design. To compute this set of prototypes, most of the algorithms in the literature require some crucial parameters as the number of prototypes to use, and a smoothing parameter. In this work, an evolutionary approach based on Nearest Neighbour Classifiers (ENNC) is introduced where no parameters are involved, thus overcoming all the problems derived from the use of the above mentioned parameters. The algorithm follows a biological metaphor where each prototype is identified with an animal, and the regions of the prototypes with the territory of the animals. These animals evolve in a competitive environment with a limited set of resources, emerging a population of animals able to survive in the environment, i.e. emerging a right set of prototypes for the above classification objectives. The approach has been tested using different domains, showing successful results, both in the classification accuracy and the distribution and number of the prototypes achieved.
机译:最近邻分类器的设计可以看作是整个域在不同区域中的分区,可以直接映射到一个类。这些区域的界限的定义是任何基于最近邻居的算法的目标。这些限制可以通过一组简化的原型的位置和类别以及最近的邻居规则来描述。可以通过任何距离度量来定义最邻近规则,而原型集是设计问题。为了计算这组原型,文献中的大多数算法都需要一些关键参数,例如要使用的原型数量和平滑参数。在这项工作中,引入了一种基于最近邻分类器(ENNC)的进化方法,其中不涉及任何参数,从而克服了使用上述参数所带来的所有问题。该算法遵循生物学的隐喻,其中每个原型都被识别为动物,而原型的区域则被识别为动物的领土。这些动物在资源有限的竞争环境中进化,涌现出能够在环境中生存的动物种群,即为上述分类目标而出现的一组正确的原型。该方法已使用不同的领域进行了测试,显示出成功的结果,无论是在分类精度还是在实现的原型的分布和数量上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号