首页> 外文期刊>Computing and informatics >AUTOMATED APPROACH TO INTRUSION DETECTION IN VM-BASED DYNAMIC EXECUTION ENVIRONMENT
【24h】

AUTOMATED APPROACH TO INTRUSION DETECTION IN VM-BASED DYNAMIC EXECUTION ENVIRONMENT

机译:基于VM的动态执行环境中的入侵检测的自动方法

获取原文
获取原文并翻译 | 示例

摘要

Because virtual computing platforms are dynamically changing, it is difficult to build high-quality intrusion detection system. In this paper, we present an automated approach to intrusions detection in order to maintain sufficient performance and reduce dependence on execution environment. We discuss a hidden Markov model strategy for abnormality detection using frequent system call sequences, letting us identify attacks and intrusions automatically and efficiently. We also propose an automated mining algorithm, named AGAS, to generate frequent system call sequences. In our approach, the detection performance is adaptively tuned according to the execution state every period. To improve performance, the period value is also under self-adjustment.
机译:由于虚拟计算平台是动态变化的,因此很难构建高质量的入侵检测系统。在本文中,我们提出了一种自动进行入侵检测的方法,以保持足够的性能并减少对执行环境的依赖。我们讨论了使用频繁的系统调用序列进行异常检测的隐马尔可夫模型策略,它使我们能够自动有效地识别攻击和入侵。我们还提出了一种名为AGAS的自动挖掘算法,以生成频繁的系统调用序列。在我们的方法中,检测性能根据每个周期的执行状态进行自适应调整。为了提高性能,周期值也可以自行调整。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号