首页> 外文期刊>Computing and informatics >APPLYING SOFT COMPUTING APPROACHES TO PREDICT DEFECT DENSITY IN SOFTWARE PRODUCT RELEASES: AN EMPIRICAL STUDY
【24h】

APPLYING SOFT COMPUTING APPROACHES TO PREDICT DEFECT DENSITY IN SOFTWARE PRODUCT RELEASES: AN EMPIRICAL STUDY

机译:应用软件计算方法预测软件产品发布中的缺陷密度:一项实证研究

获取原文
获取原文并翻译 | 示例

摘要

There is non-linear relationship between software metrics and defects, which results to a complex mapping. Therefore, to focus on the defect density area, it is a critical business requirement of effective and practical approach, which can help find the defect density in software releases. Soft computing provides a better platform to solve the non-linear and complex mapping problem. The aim of this paper is to formulate, build, evaluate, validate and compare two main sections of soft computing, fuzzy logic and artificial neural network approaches in prediction of defect density of subsequent software product releases. In this research, these two approaches are formulated and applied to predict the existence of a defect in file of software release. Both approaches have also been validated against various releases of two commercial software product release data sets. The validation criteria include mean absolute error, root mean square error and graphical analysis. The analysis of the study shows that artificial neural network provides better results compared to Fuzzy Inference System; but applicability of best approach depends on the data availability and the quantum of data.
机译:软件指标与缺陷之间存在非线性关系,这导致了复杂的映射。因此,专注于缺陷密度区域,是有效且实用的方法的一项关键业务需求,它可以帮助找到软件版本中的缺陷密度。软计算为解决非线性复杂映射问题提供了更好的平台。本文的目的是制定,构建,评估,验证和比较软计算,模糊逻辑和人工神经网络方法的两个主要部分,以预测后续软件产品版本的缺陷密度。在这项研究中,制定了这两种方法并将其应用于预测软件发布文件中缺陷的存在。两种方法都已经针对两个商业软件产品版本数据集的不同版本进行了验证。验证标准包括平均绝对误差,均方根误差和图形分析。研究分析表明,与模糊推理系统相比,人工神经网络提供了更好的结果。但是最佳方法的适用性取决于数据的可用性和数据量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号