首页> 外文期刊>Computers & Structures >Method of manufactured solutions code verification of elastostatic solid mechanics problems in a commercial finite element solver
【24h】

Method of manufactured solutions code verification of elastostatic solid mechanics problems in a commercial finite element solver

机译:商业有限元求解器中弹塑性固体力学问题的制造解决方案代码验证方法

获取原文
获取原文并翻译 | 示例

摘要

Much progress has been made in advancing and standardizing verification, validation, and uncertainty quantification practices for computational modeling in recent decades. However, examples of rigorous code verification for solid mechanics problems in literature remain scarce, particularly for commercial software and for the non-trivial large-deformation analyses and nonlinear materials typically needed to simulate medical devices. Here, we apply the method of manufactured solutions (MMS) to verify a commercial finite element code for elastostatic solid mechanics analyses using linear-elastic, hyperelastic (neo-Hookean), and quasi-hyperelastic (Hencky) constitutive models. Analytical source terms are generated using Python/SymPy and are implemented in ABAQUS/Standard without modification to solver source code. Source terms for the three constitutive models are found to vary nearly six orders of magnitude in the number of mathematical operations they contain. Refinement studies reveal second-order displacement and first-order (or higher) stress and strain convergence in response to mesh refinement for all constitutive models and first-order displacement convergence in response to pseudo-time increment refinement for the Hencky-elastic case. We also investigate the sensitivity of convergence order to quantitatively minor changes to the underlying mathematical model using an exploratory case. Code used to generate the MMS source terms and simulation input files are provided as Supplemental Material. Published by Elsevier Ltd.
机译:近几十年来,在推进和标准化用于计算建模的验证,确认和不确定性量化实践方面已经取得了很大进展。但是,对于文学中的实体力学问题,严格的代码验证示例仍然很少,特别是对于商业软件以及对于模拟医疗设备通常所需的非重要的大变形分析和非线性材料而言。在这里,我们应用制造解决方案(MMS)的方法来验证用于使用线性弹性,超弹性(neo-Hookean)和拟超弹性(Hencky)本构模型进行弹性静力学分析的商业有限元代码。使用Python / SymPy生成分析源项,并在ABAQUS / Standard中实现,而无需修改求解器源代码。发现三个本构模型的源项在它们包含的数学运算数量上变化了近六个数量级。细化研究显示,对所有本构模型的网格细化,二阶位移和一阶(或更高)应力和应变收敛,对于Hencky弹性情况,对伪时间增量细化,一阶位移收敛。我们还研究了探索性案例对收敛阶数对基本数学模型的微小变化的敏感性。补充材料中提供了用于生成MMS源条款和模拟输入文件的代码。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号