首页> 外文期刊>Computers & Structures >Fast Bayesian frequency domain modal identification from seismic response data
【24h】

Fast Bayesian frequency domain modal identification from seismic response data

机译:基于地震响应数据的快速贝叶斯频域模态识别

获取原文
获取原文并翻译 | 示例

摘要

Modal identification aims at identifying the modal parameters that mainly include natural frequencies, damping ratios and mode shapes. They provide baseline modal properties of objective structures and play an important role in the seismic design, structural health monitoring, model updating, etc. In existing monitoring systems, the input and output responses are usually recorded simultaneously, which allows the identification of the modal parameters using earthquake records in a short period of time. The Bayesian method can properly account for the uncertainty in accordance with probability logic for modal identification. This paper proposes a novel Bayesian method for modal identification using collected data during earthquakes with known input. The probability density function of modal parameters based on the Fast Fourier Transform of measured data is derived analytically. A fast algorithm has been developed to efficiently optimize the modal parameters, where the cases of closely-spaced modes and well-separated mode are applicable, even for a large number of measured degrees of freedom. A synthetic example and shaking table test were used to illustrate the efficiency and accuracy of the proposed method. Finally, this method was applied to a seven-story building - Van Nuys Hotel to investigate its dynamic characteristics using seismic response data. (C) 2018 Elsevier Ltd. All rights reserved.
机译:模态识别旨在识别模态参数,主要包括固有频率,阻尼比和模态形状。它们提供目标结构的基线模态特性,并在地震设计,结构健康监测,模型更新等方面发挥重要作用。在现有的监测系统中,通常同​​时记录输入和输出响应,从而可以识别模态参数。在短时间内使用地震记录。贝叶斯方法可以根据用于模态识别的概率逻辑适当地考虑不确定性。本文提出了一种新颖的贝叶斯方法,该方法利用已知输入地震期间收集的数据进行模态识别。通过分析得出基于测量数据的快速傅立叶变换的模态参数的概率密度函数。已经开发了一种快速算法来有效地优化模态参数,在这种情况下,即使对于大量测量的自由度,也适用于密排模式和良好分离模式的情况。通过一个综合实例和振动台试验说明了该方法的有效性和准确性。最后,将此方法应用于一栋七层楼的建筑-Van Nuys Hotel,利用地震响应数据研究其动力特性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号