首页> 外文期刊>Computers & Structures >Quasi-3D solutions for the vibration of solid and hollow slender structures with general boundary conditions
【24h】

Quasi-3D solutions for the vibration of solid and hollow slender structures with general boundary conditions

机译:具有一般边界条件的实心和空心细长结构振动的准3D解

获取原文
获取原文并翻译 | 示例

摘要

In this study, a uniform quasi-three-dimensional solution is presented for the free vibration analysis of solid and hollow slender structures with general boundary conditions. The boundary conditions are simulated by penalty method, which releases the limitation of geometrical boundary restraints on the selection of admissible functions. A combination of the improved Fourier series method (IFSM) and Taylor expansion (TE) is introduced to construct the displacement components of the structures. The nuclear matrices of the stiffness and mass matrices are derived using the energy variational principle. Subsequently, an assembly procedure based on the Carrera unified formulation (CUF) is proposed for the global matrices of higher-order configurations. In the current study, the displacement functions are not dependent on the specific shape of the section, and the proposed method is thus suitable for any uniform slender structure. Herein, different types of standard solid and hollow slender structures are studied. The efficiency and accuracy of the present method are illustrated by comparing the results with the reference data and solutions of the commercial codes. Finally, the effects of the geometrical dimensions and boundary conditions on the vibration characteristics are investigated. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在这项研究中,提出了一个统一的准三维解,可以对具有一般边界条件的实心和空心细长结构的自由振动进行分析。边界条件通过惩罚方法进行模拟,从而解除了几何边界约束对可允许函数选择的限制。引入改进的傅里叶级数方法(IFSM)和泰勒展开(TE)的组合来构造结构的位移分量。刚度和质量矩阵的核矩阵是使用能量变分原理导出的。随后,针对高阶配置的整体矩阵,提出了一种基于Carrera统一公式(CUF)的组装程序。在当前的研究中,位移函数不取决于截面的特定形状,因此,所提出的方法适用于任何均匀的细长结构。在此,研究了不同类型的标准实心和空心细长结构。通过将结果与参考数据和商业代码的解决方案进行比较,说明了本方法的效率和准确性。最后,研究了几何尺寸和边界条件对振动特性的影响。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号