首页> 外文期刊>Computers & Structures >An Unsteady Adaptive Stochastic Finite Elements Formulation For Rigid-body Fluid-structure Interaction
【24h】

An Unsteady Adaptive Stochastic Finite Elements Formulation For Rigid-body Fluid-structure Interaction

机译:刚体流固耦合的非稳态自适应随机有限元公式

获取原文
获取原文并翻译 | 示例

摘要

An adaptive stochastic finite elements approach for unsteady problems is developed. Time-dependent solutions of dynamical systems are known to be sensitive to small input variations. Stochastic finite elements methods usually require a fast increasing number of elements with time to capture the effect of random input parameters in these unsteady problems. The resulting large number of samples required for resolving the asymptotic stochastic behavior, results for computationally intensive fluid-structure interaction simulations in impractically high computational costs. The unsteady adaptive stochastic finite elements (UASFE) formulation proposed in this paper maintains a constant interpolation accuracy in time with a constant number of samples. The approach is based on a time-independent parametrization of the sampled time series in terms of frequency, phase, amplitude, reference value, damping, and higher-period shape function. This parametrization is interpolated using a robust adaptive stochastic finite elements method based on Newton-Cotes quadrature in simplex elements. The effectiveness of the UASFE approach is illustrated by applications to a mass-spring-damper system, the Duffing equation, and a rigid-airfoil fluid-structure interaction problem with multiple random input parameters. The results are verified by comparison to those of Monte Carlo simulations.
机译:针对非定常问题,提出了一种自适应随机有限元方法。已知动力系统的时间相关解决方案对较小的输入变化敏感。随机有限元方法通常需要随时间快速增加数量的元素,才能捕获这些不稳定问题中随机输入参数的影响。解决渐近随机行为所需的大量样本,以不切实际的高计算成本获得了计算密集型流体-结构相互作用模拟的结果。本文提出的非稳态自适应随机有限元(UASFE)公式在样本数量恒定的情况下,在时间上保持恒定的插值精度。该方法基于采样时间序列在时间,频率,相位,幅度,参考值,阻尼和高周期形状函数方面的与时间无关的参数化。使用基于单纯形元素中的牛顿-科特斯正交的鲁棒自适应随机有限元方法对这种参数化进行插值。通过应用到质量弹簧-阻尼器系统,Duffing方程以及具有多个随机输入参数的刚性翼型流固耦合问题,可以说明UASFE方法的有效性。通过与蒙特卡洛模拟的比较来验证结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号