首页> 外文期刊>Computers & Structures >Finite Element Procedures For Nonlinear Structures In Moving Coordinates. Part Ii: Infinite Beam Under Moving Harmonic Loads
【24h】

Finite Element Procedures For Nonlinear Structures In Moving Coordinates. Part Ii: Infinite Beam Under Moving Harmonic Loads

机译:移动坐标系中非线性结构的有限元程序。第II部分:谐波负载下的无限光束

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a numerical approach to the stationary solution of infinite Euler-Bernoulli beams posed on Winkler foundations under moving harmonic loads. The procedure proposed in Part 1 [Nguyen V-H, Duhamel D. Finite element procedures for nonlinear structures in moving coordinates. Part I: infinite bar under moving axial loads. Comput Struct 2006;84(21):1368-80], which has been applied to consider the longitudinal vibration of rods under constant amplitude moving loads in moving coordinates, is enhanced herein for the case of moving loads with time-dependent amplitudes. Firstly, the separation of variables is used to distinguish the convection component from the amplitude component of the displacement function. Then, the stationary condition is applied to the convection component to obtain a dynamic formulation in the moving coordinates. Numerical examples are computed with a linear structure to validate the proposed method. Finally, nonlinear elastic foundation problems are presented.
机译:本文提出了一种数值方法,用于在运动谐波载荷下,将无限大的Euler-Bernoulli梁固定在Winkler基础上的固定解。在第1部分中提出的过程[Nguyen V-H,Duhamel D.移动坐标系中非线性结构的有限元过程。第一部分:轴向运动载荷作用下的无限杆。 [Comput Struct 2006; 84(21):1368-80]已被应用来考虑在移动坐标系中恒定振幅的移动载荷下杆的纵向振动,对于具有随时间变化的振幅的移动载荷,本文对此进行了增强。首先,使用变量的分离来区分对流分量和位移函数的振幅分量。然后,将静止条件应用于对流分量,以获得运动坐标中的动态公式。用线性结构计算数值实例以验证所提出的方法。最后,提出了非线性弹性地基问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号