首页> 外文期刊>Computers & Structures >On The Solution Of The Checkerboard Problem In Mixed-fem Topology Optimization
【24h】

On The Solution Of The Checkerboard Problem In Mixed-fem Topology Optimization

机译:混合Fem拓扑优化中棋盘格问题的求解

获取原文
获取原文并翻译 | 示例

摘要

The paper deals with an alternative formulation for the classical topology optimization problem of getting structures with minimum compliance with constraint on volume, relying on the adoption of a mixed finite-element discretization scheme instead of a common displacement-based one. Using mixed methods not only displacements are main variables but also stresses enter the formulation. Two dual variational principles of Hellinger-Reissner are presented in their continuous and discrete form and included in the topology optimization problem that is solved through the method of moving asymptotes (MMA). Numerical simulations are performed for both the formulations and in particular for the truly-mixed setting coupled to a mixed-FEM discretization that uses the composite element of Johnson and Mercier referring to the discretization of the stress field. This formulation is shown to achieve pure 0-1 designs with the relevant feature of being checkerboard-free without the adoption of any filtering technique. Ongoing extensions are outlined including the optimization of incompressible materials and the imposition of stress constraints that both find in the truly-mixed setting their natural environment.
机译:本文提出了一种经典拓扑优化问题的替代方案,即采用混合有限元离散化方案而不是基于位移的常规方案,从而获得对结构的体积约束最小的结构。使用混合方法,不仅位移是主要变量,而且应力也进入了公式。提出了Hellinger-Reissner的两个对偶变分原理,它们是连续的和离散的形式,并包含在通过移动渐近线(MMA)方法解决的拓扑优化问题中。对两种配方都进行了数值模拟,特别是对与混合有限元离散化耦合的真正混合环境进行了数值模拟,该混合有限元离散化使用了Johnson和Mercier的复合元素,即应力场的离散化。该配方显示出可以实现纯0-1设计,并且具有无棋盘的相关功能,而无需采用任何过滤技术。概述了正在进行的扩展,包括优化不可压缩材料和施加应力约束,这两者都在真正混合的环境中找到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号