首页> 外文期刊>Computers & Structures >A Parallel Spectral Element Method For Dynamic Three-dimensional Nonlinear Elasticity Problems
【24h】

A Parallel Spectral Element Method For Dynamic Three-dimensional Nonlinear Elasticity Problems

机译:动态三维非线性弹性问题的并行谱元方法

获取原文
获取原文并翻译 | 示例

摘要

We present a high-order method employing Jacobi polynomial-based shape functions, as an alternative to the typical Legendre polynomial-based shape functions in solid mechanics, for solving dynamic three-dimensional geometrically nonlinear elasticity problems. We demonstrate that the method has an exponential convergence rate spatially and a second-order accuracy temporally for the four classes of problems of linear/geometrically nonlinear elastostatics/elastodynamics. The method is parallelized through domain decomposition and message passing interface (MPI), and is scaled to over 2000 processors with high parallel performance.
机译:我们提出了一种基于Jacobi多项式的形状函数的高阶方法,作为固体力学中典型的基于Legendre多项式的形状函数的替代方法,用于解决动态三维几何非线性弹性问题。我们证明该方法对于线性/几何非线性弹性静力学/弹性动力学的四类问题在空间上具有指数收敛速度,在时间上具有二阶精度。该方法通过域分解和消息传递接口(MPI)进行了并行化,并扩展到具有高并行性能的2000多个处理器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号