首页> 外文期刊>Computers & Structures >Modal analysis and modified cascade neural networks in identification of geometrical parameters of circular arches
【24h】

Modal analysis and modified cascade neural networks in identification of geometrical parameters of circular arches

机译:圆弧几何参数识别的模态分析和改进的级联神经网络

获取原文
获取原文并翻译 | 示例

摘要

A hybrid computational system, composed of the finite element method (FEM) and cascade neural network system (CNNs), is applied to the identification of three geometrical parameters of elastic arches, i.e. span /, height /and cross-sectional thickness h. FEM is used in the direct (forward) analysis, which corresponds to the mapping a = {l,f, h} → {ω_j}, where: a - vector of control parameters, ω_j- arch eigen-frequencies. The reverse analysis is related to the identification procedure in which the reverse mapping is performed {ω_j} ->{ α_j}. For the identification purposes a recurrent, three level CNNs of structure (D~k-H~k-1 )_s was formulated, where: k - recurrence step, s - I, II, Ill-levels of cascade system. The Semi-Bayesian approach is introduced for the design of CNNs applying the MML Maximum Marginal Likelihood) criterion. The computation of hyperparameters is performed by means of the Bayesian procedure evidence. The numerical analysis proves a great numerical efficiency of the proposed hybrid approach for both the perfect (noiseless) values of eigenfrequencies and noisy ones simulated by an added artificial noise.
机译:将由有限元方法(FEM)和级联神经网络系统(CNN)组成的混合计算系统用于识别弹性拱的三个几何参数,即跨度/,高度/和横截面厚度h。 FEM用于直接(正向)分析,它对应于映射a = {l,f,h}→{ω_j},其中:a-控制参数向量,ω_j-本征频率。反向分析与其中执行反向映射{ω_j}-> {α_j}的识别过程有关。为了鉴定的目的,制定了结构(D〜k-H〜k-1)_s的三级循环CNN,其中:k-递归步骤,s-I,II,级联系统的III级。针对使用MML最大边际可能性(MML Maximum Marginal Likelihood)准则的CNN设计,引入了半贝叶斯方法。超参数的计算是通过贝叶斯过程证据进行的。数值分析证明了该混合方法对于本征频率的理想(无噪声)值和由附加人工噪声模拟的噪声值均具有很高的数值效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号