首页> 外文期刊>Computers & Structures >Bayesian identification of a cracked plate using a population-based Markov Chain Monte Carlo method
【24h】

Bayesian identification of a cracked plate using a population-based Markov Chain Monte Carlo method

机译:基于人口的马尔可夫链蒙特卡罗方法对裂隙板的贝叶斯识别

获取原文
获取原文并翻译 | 示例

摘要

Estimating damage in structural systems is a challenging problem due to the complexity of the likelihood function describing the observed data. From a Bayesian perspective a complicated likelihood means efficient sampling of the posterior distribution is difficult and standard Markov Chain Monte Carlo samplers may no longer be sufficient. This work describes a population-based Markov Chain Monte Carlo approach for efficient sampling of the damage parameter posterior distributions. The approach is shown to accurately estimate the state of damage in a cracked plate structure using simulated, free-decay response data. The use of this approach in identifying structural damage has not previously been explored.
机译:由于描述观测数据的似然函数的复杂性,估计结构系统中的损坏是一个具有挑战性的问题。从贝叶斯角度看,复杂的可能性意味着难以对后验分布进行有效采样,并且标准的马尔可夫链蒙特卡洛采样器可能不再足够。这项工作描述了基于种群的马尔可夫链蒙特卡洛方法,用于有效采样损伤参数的后验分布。结果表明,该方法可以使用模拟的自由衰减响应数据准确估算开裂板结构中的损伤状态。以前尚未探讨过使用这种方法来识别结构损坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号