首页> 外文期刊>Computers & Structures >Combined parametric-nonparametric uncertainty quantification using random matrix theory and polynomial chaos expansion
【24h】

Combined parametric-nonparametric uncertainty quantification using random matrix theory and polynomial chaos expansion

机译:基于随机矩阵理论和多项式混沌展开的组合参数-非参数不确定性量化

获取原文
获取原文并翻译 | 示例

摘要

Propagation of combined parametric and nonparametric uncertainties in elliptic partial differential equations is considered. Two cases, namely, (a) both uncertainties are over the entire domain, and (b) different types of uncertainties are over non-overlapping subdomains are proposed. Parametric uncertainty is modelled by a random field and is discretised using the Karhunen-Loeve (KL) expansion. The nonparametric uncertainty is modelled by Wishart random matrix. Both uncertainties are considered independent, and the two first moments of the response are calculated using polynomial chaos expansion and analytical random matrix theory results. Closed-form analytical expressions of the first two moments are derived for both cases.
机译:考虑组合参数和非参数不确定性在椭圆型偏微分方程中的传播。提出了两种情况,即(a)两个不确定性都在整个域内,以及(b)不同类型的不确定性在非重叠子域内。参数不确定性由随机场建模,并使用Karhunen-Loeve(KL)展开离散化。非参数不确定性由Wishart随机矩阵建模。两种不确定性都被认为是独立的,并且使用多项式混沌展开和解析随机矩阵理论结果来计算响应的两个第一矩。两种情况都导出了前两个时刻的闭式分析表达式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号