首页> 外文期刊>Computers & Structures >Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach
【24h】

Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach

机译:基于等几何方法的功能梯度各向同性夹层板的广义剪切变形理论

获取原文
获取原文并翻译 | 示例

摘要

A generalized shear deformation theory for static, dynamic and buckling analysis of functionally graded material (FGM) made of isotropic and sandwich plates is presented in this paper. Two new distribution functions are proposed in the present formulation. These functions determine the distribution of the transverse shear strains and stresses across the thickness of the plates. The present theory is derived from the classical plate theory (CPT), and hence the shear locking phenomenon can be ignored. It has same number of degrees of freedom as the first order shear deformation theory (FSDT), but it does not require shear correction factors because the shear stress free surface conditions are naturally satisfied. As demonstrated in the following sections, the proposed theory yields very accurate prediction for displacement, stresses, natural frequencies and critical buckling load compared to three-dimensional (3D) elasticity solution. Galerkin weak form of static, free vibration and buckling models for FGM isotropic and sandwich plates are used to create the discrete system of equations. This weak form requires C~1-continuity for generalized displacements. It can be solved by a number of methods such as analytical methods, finite element methods based on the Hermite interpolation functions, meshfree method and recently developed NURBS based isogeometric analysis (IGA). The NURBS basis functions used in IGA are C~(p-1) continuous and therefore can easily satisfy the C~1-continuity condition. Numerical examples are presented to illustrate the effectiveness of the proposed method compared to other methods reported in the literature.
机译:本文提出了一种广义剪力变形理论,用于对各向同性和夹心板制成的功能梯度材料(FGM)的静态,动态和屈曲分析。在本公式中提出了两个新的分布函数。这些功能确定了整个板厚度上的横向剪切应变和应力的分布。本理论源于经典板理论(CPT),因此剪切锁定现象可以忽略。它具有与一阶剪切变形理论(FSDT)相同的自由度,但是由于自然满足无剪切应力的表面条件,因此不需要剪切校正因子。如以下各节所示,与三维(3D)弹性解决方案相比,所提出的理论对位移,应力,固有频率和临界屈曲载荷产生了非常准确的预测。 FGM各向同性板和夹层板的Galerkin弱形式的静态,自由振动和屈曲模型用于创建离散方程组。对于一般位移,这种弱形式需要C〜1连续性。它可以通过许多方法来解决,例如分析方法,基于Hermite插值函数的有限元方法,无网格方法以及最近开发的基于NURBS的等几何分析(IGA)。 IGA中使用的NURBS基函数是C〜(p-1)连续的,因此可以轻松满足C〜1连续性的条件。数值例子表明,与文献报道的其他方法相比,该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号