首页> 外文期刊>Computers & Structures >An EPR-based self-learning approach to material modelling
【24h】

An EPR-based self-learning approach to material modelling

机译:基于EPR的材料建模自学习方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper an EPR-based self-learning method is presented for modelling the constitutive behaviour of materials using evolutionary polynomial regression (EPR). The proposed approach takes advantage of the rich stress-strain data buried in non-homogenous structural tests. The load-deformation data collected from experiment are used to iteratively train EPR-based material model using finite element simulations of the structural test. Two numerical examples are presented to illustrate the application of the proposed approach. It is shown that the EPR model gradually improves during the self-learning training and provides accurate prediction for the constitutive behaviour of the material.
机译:在本文中,提出了一种基于EPR的自学习方法,用于使用进化多项式回归(EPR)来建模材料的本构行为。所提出的方法利用了埋在非均匀结构测试中的丰富应力-应变数据。从实验中收集的载荷-变形数据用于通过结构测试的有限元模拟来反复训练基于EPR的材料模型。给出两个数值示例来说明所提出方法的应用。结果表明,EPR模型在自学训练过程中逐渐得到改善,并为材料的本构行为提供了准确的预测。

著录项

  • 来源
    《Computers & Structures》 |2014年第6期|63-71|共9页
  • 作者单位

    Department of Civil Engineering, School of Engineering, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom;

    Department of Civil Engineering, School of Engineering, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom;

    Computational Geomechanics Group, College of Engineering Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter EX4 4QF, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Self-learning; Finite element; Evolutionary computation; Material modelling; EPR;

    机译:自学;有限元;进化计算;材料建模;EPR;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号