首页> 外文期刊>Computers & Structures >Modeling crack propagation with the extended scaled boundary finite element method based on the level set method
【24h】

Modeling crack propagation with the extended scaled boundary finite element method based on the level set method

机译:基于水平集方法的扩展尺度边界有限元方法对裂纹扩展建模

获取原文
获取原文并翻译 | 示例

摘要

The extended scaled boundary finite element method (X-SBFEM) based on the level set method (LSM) is proposed in this paper to combine the advantages of the scaled boundary finite element method (SBFEM) and the extended finite element method (XFEM). The level set method (LSM) algorithm is applied to further develop the X-SBFEM, especially for the crack propagation problem. The Heaviside enrichment function is used to represent a jump across a discontinuity surface in a split element, and the non-smooth behavior around the crack tip is described using the semi-analytical SBFEM. The stiffness of the region containing the crack tip is computed directly, and the generalized stress intensity factors of many types of singularities are obtained directly from their definitions using consistent formulas. In the numerical simulations, a square plate with an edge crack under tension, a three-point bending beam, a four point shear beam and a dam (the Koyna dam) with a single propagating crack are modeled. The results show that the proposed X-SBFEM is capable of calculating the stress intensity factors of cracks and predicting crack trajectories and load-displacement relations accurately. An analysis of the sensitivity of the parameters is employed to demonstrate that various mesh densities and crack propagation step lengths led to consistent results. (C) 2016 Elsevier Ltd. All rights reserved.
机译:结合水平定界有限元方法(SBFEM)和扩展有限元方法(XFEM)的优点,提出了一种基于水平集方法(LSM)的扩展尺度边界有限元方法(X-SBFEM)。应用水平集方法(LSM)算法进一步开发X-SBFEM,特别是针对裂纹扩展问题。 Heaviside富集函数用于表示分裂元素中不连续表面的跃迁,并且使用半解析SBFEM描述了裂纹尖端周围的非光滑行为。直接计算包含裂纹尖端的区域的刚度,并使用一致的公式直接从其定义中获得多种类型的奇点的广义应力强度因子。在数值模拟中,对具有受拉边缘裂纹的方形板,三点弯曲梁,四点剪切梁和具有单个传播裂纹的坝(科伊纳坝)进行了建模。结果表明,所提出的X-SBFEM能够计算出裂纹的应力强度因子,并能准确预测裂纹的轨迹和载荷-位移关系。对参数敏感性的分析被用来证明各种网格密度和裂纹扩展步长导致一致的结果。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Computers & Structures》 |2016年第4期|50-68|共19页
  • 作者单位

    Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Inst Earthquake Engn, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China;

    Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Inst Earthquake Engn, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China;

    Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Inst Earthquake Engn, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China|China Railway Siyuan Survey & Design Grp Co Ltd, Wuhan 430063, Hubei, Peoples R China;

    Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78751 USA;

    Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Inst Earthquake Engn, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Extended scale boundary finite element method; Linear elastic fracture mechanics; Crack propagation; Stress intensity factors; Level set method;

    机译:扩展尺度边界有限元法;线性弹性断裂力学;裂纹扩展;应力强度因子;水平集方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号