首页> 外文期刊>Computers & Structures >Topology optimization for minimizing the maximum dynamic response in the time domain using aggregation functional method
【24h】

Topology optimization for minimizing the maximum dynamic response in the time domain using aggregation functional method

机译:使用聚合函数方法进行拓扑优化以最大程度地减小时域中的最大动态响应

获取原文
获取原文并翻译 | 示例

摘要

This paper develops an efficient approach to solving dynamic response topology optimization problems in the time domain. The objective is to minimize the maximum response of the structure over the complete vibration phase. In order to alleviate the difficulties due to the max operator in the objective function, an aggregation functional is proposed and employed to transform the original problem formulation into one that is computational tractable. The main advantage of the proposed aggregation functional over the existing aggregation functions, such as KS function and the p-norm function is that, for the dynamic response problems in the time domain, the differentiate-then-discretize approach can now be used for adjoint sensitivity analysis, instead of the discretize-then-differentiate approach, which is tightly coupled with the numerical integration schemes of the primal analysis and is more cumbersome. In addition to the solution method, some issues of dynamic response topology optimization problems in the time domain are discussed. The reason why the maximum dynamic response may occur in the free vibration phase for transient load is uncovered. A strategy to reduce the maximum dynamic response over the complete vibration phase is proposed. Numerical examples demonstrate the effectiveness of the proposed method. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文提出了一种解决时域动态响应拓扑优化问题的有效方法。目的是使结构在整个振动阶段的最大响应最小化。为了减轻由于最大算子在目标函数中造成的困难,提出了一种聚合函数并将其用于将原始问题公式转换为可计算的形式。与现有的聚合函数(例如KS函数和p-norm函数)相比,所提出的聚合函数的主要优势在于,对于时域中的动态响应问题,微分-离散-离散方法现在可以用于伴随灵敏度分析,而不是先离散后差分法,这种方法与原始分析的数值积分方案紧密耦合,并且比较麻烦。除了解决方法外,还讨论了时域动态响应拓扑优化问题。在瞬态负载的自由振动阶段可能会出现最大动态响应的原因尚未揭晓。提出了一种在整个振动阶段降低最大动态响应的策略。数值算例表明了该方法的有效性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号