首页> 外文期刊>Computers & Structures >An energy-momentum co-rotational formulation for nonlinear dynamics of planar beams
【24h】

An energy-momentum co-rotational formulation for nonlinear dynamics of planar beams

机译:平面梁非线性动力学的能量动量同向旋转公式

获取原文
获取原文并翻译 | 示例

摘要

This article presents an energy-momentum integration scheme for the nonlinear dynamic analysis of planar Euler-Bernoulli beams. The co-rotational approach is adopted to describe the kinematics of the beam and Hermitian functions are used to interpolate the local transverse displacements. In this paper, the same kinematic description is used to derive both the elastic and the inertia terms. The classical midpoint rule is used to integrate the dynamic equations. The central idea, to ensure energy and momenta conservation, is to apply the classical midpoint rule to both the kinematic and the strain quantities. This idea, developed by one of the authors in previous work, is applied here in the context of the co-rotational formulation to the first time. By doing so, we circumvent the nonlinear geometric equations relating the displacement to the strain which is the origin of many numerical difficulties. It is rigorously shown that the proposed method conserves the total energy of the system and, in absence of external loads, the linear and angular momenta remain constant. The accuracy and stability of the proposed algorithm, especially in long term dynamics with a very large number of time steps, is assessed through four numerical examples. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文提出了一种能量动量积分方案,用于平面欧拉-伯努利梁的非线性动力分析。采用同向旋转方法来描述梁的运动学,并使用埃尔米特函数内插局部横向位移。在本文中,相同的运动学描述用于导出弹性项和惯性项。经典的中点法则用于积分动力学方程。确保能量和动量守恒的中心思想是将经典的中点规则应用于运动量和应变量。由一位作者在以前的工作中提出的这个想法在同轮换制的上下文中首次被应用。通过这样做,我们规避了将位移与应变相关联的非线性几何方程,应变是许多数值困难的根源。严格地表明,所提出的方法节省了系统的总能量,并且在没有外部负载的情况下,线性和角动量保持恒定。通过四个数值示例评估了所提出算法的准确性和稳定性,尤其是在具有大量时间步长的长期动力学中。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Computers & Structures》 |2017年第7期|50-63|共14页
  • 作者单位

    Univ Bretagne Loire, INSA Rennes, Struct Engn Res Grp, LGCGM, 20 Ave Buttes Coesmes,CS 70839, F-35708 Rennes 7, France|KTH, Royal Inst Technol, Dept Civil & Architectural Engn, SE-10044 Stockholm, Sweden;

    Univ Bretagne Loire, INSA Rennes, Struct Engn Res Grp, LGCGM, 20 Ave Buttes Coesmes,CS 70839, F-35708 Rennes 7, France;

    Univ Bretagne Loire, INSA Rennes, Struct Engn Res Grp, LGCGM, 20 Ave Buttes Coesmes,CS 70839, F-35708 Rennes 7, France;

    KTH, Royal Inst Technol, Dept Civil & Architectural Engn, SE-10044 Stockholm, Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Co-rotational formulation; Energy-momentum method; Conserving energy; Nonlinear dynamic; 2D beam;

    机译:同向旋转公式;能量动量法;节能;非线性动力学;二维光束;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号