首页> 外文期刊>Computers & Structures >Modeling of mechanical behavior of amorphous solids undergoing fatigue loadings, with application to polymers
【24h】

Modeling of mechanical behavior of amorphous solids undergoing fatigue loadings, with application to polymers

机译:承受疲劳载荷的无定形固体力学行为建模及其在聚合物中的应用

获取原文
获取原文并翻译 | 示例

摘要

An approach suitable for modeling viscoelastic-viscoplastic response with isothermal fatigue damage in amorphous solids is proposed. The theory explicitly accounts for frame-indifference and dependence of the free energy on both the viscoelastic-viscoplastic deformation and fatigue damage in a thermodynamically consistent manner. The damage evolution per se is formulated by utilizing an endurance surface that shifts in an effective stress space independent on damage. The idea is suitable for solids in which the fatigue behavior is ductile, i.e. localized damage during the creation of micro-cracks governs majority (up to 95%) of the total fatigue life. Based on implicit numerical integration, the solution procedure is presented, and its capability for technologically important polycarbonate (PC) polymer is addressed. To simulate the fatigue in real specimens, the approach is implemented in a finite-element program. A microscopic, rectangular region representing a RVE of a test specimen is investigated. Simulations, in accordance with experimental observations, indicate that damage develops in small zones around involved inhomogeneities while majority of the material remains undamaged for most of the fatigue life. The results also show that fatigue life can be predicted using a single point at which fatigue most intensively initiates. (C) 2018 Elsevier Ltd. All rights reserved.
机译:提出了一种适合模拟无定形固体中等温疲劳损伤的粘弹-粘塑性响应的方法。该理论以热力学一致的方式明确考虑了框架差异和自由能对粘弹-粘塑性变形和疲劳损伤的依赖性。破坏的演变本身是通过利用一个承受力的表面来制定的,该承受力的表面在有效的应力空间中移动而不受破坏的影响。该想法适用于疲劳行为具有延性的固体,即在产生微裂纹的过程中局部损坏占总疲劳寿命的大部分(最高95%)。在隐式数值积分的基础上,提出了求解程序,并论述了其对具有重要技术意义的聚碳酸酯(PC)聚合物的处理能力。为了模拟真实样品的疲劳,该方法在有限元程序中实现。研究了代表试样RVE的微观矩形区域。根据实验观察结果进行的模拟表明,损伤在不均匀周围的小区域内发展,而大多数材料在大多数疲劳寿命中均未受损。结果还表明,可以使用疲劳最剧烈的单个时间点来预测疲劳寿命。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号