首页> 外文期刊>Computers & Security >Non-Interactive and secure outsourcing of PCA-Based face recognition
【24h】

Non-Interactive and secure outsourcing of PCA-Based face recognition

机译:基于PCA的面部识别的非互动和安全的外包

获取原文
获取原文并翻译 | 示例

摘要

In recent years, there have been more and more researches focus on the field of face recognition with the development of artificial intelligence (AI). Principal Component Analysis (PCA) is an important face recognition algorithm which has high accuracy without a large amount of data. Currently, the outsourcing of PCA-based face recognition protocol required three interactions between the clients and the cloud to execute matrix multiplications and eigenvalue decomposition, respectively, which needs very high communicational costs. In this paper, we propose a non-interactive PCA-based face recognition outsourcing protocol, which only needs one encryption and decryption without interactions between the clients and the cloud. That is to say, the client can obtain the final result of face recognition by encrypting the original images and decrypting the outsourcing results only once. The privacy of input and output is protected well by the proposed protocol, and the computational complexity is greatly reduced. In addition, the client can effectively detect the bad behaviors of the cloud and refuse the wrong outsourcing results by a verification algorithm. We prove the feasibility of our protocol from both theoretical and experimental analysis. The theoretical analysis shows that our proposed protocol reduces the computational overheads on the client's side from O(n~3) to O(n~2). We simulate the proposed protocol and the experimental results show that when the matrix dimension exceeds 2500 × 3000, the client can gain more than 16.9825 overhead savings which indicates the efficiency of the proposed protocol.
机译:近年来,越来越多的研究侧重于与人工智能发展(AI)的发展领域。主成分分析(PCA)是一个重要的面部识别算法,其具有高精度而无需大量数据。目前,基于PCA的面部识别协议的外包需要客户端和云之间的三个相互作用,以分别执行矩阵乘法和特征值分解,这需要非常高的通信成本。在本文中,我们提出了一种基于非交互式PCA的面部识别外包协议,其仅需要一个加密和解密而无需客户端和云之间的交互。也就是说,客户端可以通过加密原始图像并仅解密外包结果来获得面部识别的最终结果。通过提出的协议保护输入和输出的隐私,并且计算复杂性大大减少。此外,客户可以有效地检测云的不良行为,并通过验证算法拒绝错误的外包结果。我们从理论和实验分析中证明了我们的协议的可行性。理论分析表明,我们所提出的协议将客户端的计算开销从O(n〜3)降至O(n〜2)。我们模拟所提出的协议,实验结果表明,当矩阵尺寸超过2500×3000时,客户端可以获得超过16.9825的开销节省,这表明所提出的协议的效率。

著录项

  • 来源
    《Computers & Security》 |2021年第11期|102416.1-102416.11|共11页
  • 作者单位

    School of Communication and Information Engineering Shanghai Unuersity Shanghai 200444 China;

    School of Communication and Information Engineering Shanghai Unuersity Shanghai 200444 China;

    School of Communication and Information Engineering Shanghai Unuersity Shanghai 200444 China;

    School of Communication and Information Engineering Shanghai Unuersity Shanghai 200444 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cloud computing; Face recognition; PCA; Non-interactive;

    机译:云计算;人脸识别;PCA;非互动;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号