首页> 外文期刊>Computers & Security >An efficient multistage phishing website detection model based on the CASE feature framework: Aiming at the real web environment
【24h】

An efficient multistage phishing website detection model based on the CASE feature framework: Aiming at the real web environment

机译:基于案例特征框架的高效多级网络钓鱼网站检测模型:瞄准真实网络环境

获取原文
获取原文并翻译 | 示例

摘要

Phishing has become a favorite method of hackers for committing data theft and continues to evolve. As long as phishing websites continue to operate, many more people and companies will suffer privacy leaks or financial losses. Therefore, the demand for fast and accurate phishing website detection grows stronger. However, the existing phishing detection methods do not fully analyze the features of phishing, and the performance and efficiency of the models only apply to certain limited datasets and need to be improved to be applied to the real web environment. This paper fully considers the social engineering principles of phishing, proposes a comprehensive and interpretable CASE feature framework and designs a multistage phishing detection model to effectively detect phishing sites, especially in the real web environment, where high efficiency and performance and extremely low false alarm rates are required. To fully verify the proposed method, two kinds of data experiments were carried out. One was the comparative experiments among different features and different detection models on CASE, which covers both classic machine learning and deep learning algorithms based on a constructed complex dataset. The other was a one-year phishing discovery experiment in the real web environment. The proposed method achieves better detection results under the premise of significantly shortening the execution time and works well in real phishing discovery, which proves its high practicability in reality.
机译:网络钓鱼已成为致力于盗窃数据盗窃并继续发展的黑客最受欢迎的方法。只要网络钓鱼网站继续运作,更多的人和公司将遭受隐私泄漏或经济损失。因此,对快速准确的网络钓鱼网站检测的需求变得更强壮。然而,现有的网络钓鱼检测方法没有完全分析网络钓鱼的特征,并且模型的性能和效率仅适用于某些有限数据集,并且需要改进以应用于真实的Web环境。本文充分考虑了网络钓鱼的社会工程原则,提出了一个全面和可解释的案例特征框架,并设计了多级网络钓鱼检测模型,以有效地检测网络钓鱼站点,特别是在真实的Web环境中,高效率和性能和极低的误报率是必须的。为了完全验证所提出的方法,进行了两种数据实验。一个是不同特征和不同检测模型的比较实验,在案例上,基于构造的复杂数据集涵盖了经典机器学习和深度学习算法。另一个是真实网络环境中为期一年的网络钓鱼发现实验。所提出的方法在大幅缩短执行时间的前提下实现了更好的检测结果,并且在真正的网络钓鱼发现中运作良好,这证明了其现实的高实用性。

著录项

  • 来源
    《Computers & Security》 |2021年第11期|102421.1-102421.14|共14页
  • 作者单位

    Computer Network Information Center Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China;

    College of Cyber Security Jinan University Guangzhou 510632 China;

    Department of Intelligent Science School of Advanced Technology Xi'an Jiaotong-Liuerpool University Suzhou China;

    Computer Network Information Center Chinese Academy of Sciences Beijing China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Phishing detection; CASE feature framework; Multistage model; Machine learning; Real web environment;

    机译:网络钓鱼检测;案例特征框架;多级模型;机器学习;真正的网络环境;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号