首页> 外文期刊>Computers & Security >Riemannian manifold on stream data: Fourier transform and entropy-based DDoS attacks detection method
【24h】

Riemannian manifold on stream data: Fourier transform and entropy-based DDoS attacks detection method

机译:Riemannian歧管在流数据中:傅里叶变换和基于熵的DDOS攻击检测方法

获取原文
获取原文并翻译 | 示例

摘要

The means to achieve DDoS (distributed denial of service) attacks are becoming increasingly automated and diverse. A problem that automated attack tools cannot address, at least for now, is the inevitable repetitive or periodic nature of traffic data, which are important features for the effective detection of DDoS attacks. Some researchers have proposed to detect DDoS attacks by analyzing the frequency domain information or information entropy of network communication signals or network packets. However, they still suffer from insufficient accuracy and slow response time when dealing with large-scale attack data and multiple-packet types of attacks. Therefore, we hope to develop a detection method that can detect large-scale and multiple types of DDoS. This paper proposes a new DDoS detection method based on fast Fourier transform (FFT) and information entropy. This method (FFT and entropy-based DDoS detection method [FEDDM]) focuses on the periodicity of DDoS network traffic. First, we consider each piece of network traffic data as a network behavior. Then, we prove that the network traffic data conforms to the Riemann flow structure. We define the concept of work of stream data and treat it as a feature. The effect of stream data on the communication capacity can be considered as the work performed by the stream data on the channel. In addition, to improve the efficiency and accuracy of detection, we use the FFT coefficients and information entropy of work as features to train the neural network (NN) to detect DDoS attacks. This method is lightweight, faster, and more generally applicable. The experiment proved the advantage of this method using the latest CICDDoS2019 dataset. In the simulation, the detection accuracy of NetBIOS, SNMP, syn, and WebDDoS is more than 99.99%, which proves our method.
机译:实现DDOS(分布式拒绝服务)攻击的手段变得越来越自动化和多样化。至少目前,自动攻击工具无法解决的问题是交通数据的不可避免的重复或周期性,这是有效检测DDOS攻击的重要特征。一些研究人员通过分析网络通信信号或网络分组的频域信息或信息熵来提出通过分析频域信息或信息熵来检测DDOS攻击。然而,当处理大规模攻击数据和多包攻击时,它们仍然遭受的准确性不足和响应时间慢。因此,我们希望开发一种可以检测大规模和多种类型的DDO的检测方法。本文提出了一种基于快速傅里叶变换(FFT)和信息熵的新DDOS检测方法。这种方法(FFT和基于熵的DDOS检测方法[FEDDM])侧重于DDOS网络流量的周期性。首先,我们将每条网络流量数据视为网络行为。然后,我们证明网络流量数据符合riemann流结构。我们定义流数据的工作概念并将其视为一个特征。流数据对通信容量的影响可以被认为是由信道上的流数据执行的工作。此外,为了提高检测的效率和准确性,我们使用FFT系数和信息熵作为培训神经网络(NN)来检测DDOS攻击。这种方法是重量轻,更快,更普遍适用。实验证明了使用最新的CICDDOS2019数据集的方法的优势。在模拟中,NetBIOS,SNMP,SYN和WebDO的检测精度超过99.99%,证明了我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号