首页> 外文期刊>Computers & Security >Machine learning based deep job exploration and secure transactions in virtual private cloud systems
【24h】

Machine learning based deep job exploration and secure transactions in virtual private cloud systems

机译:基于机器学习的虚拟私有云系统的深度求职和安全事务

获取原文
获取原文并翻译 | 示例

摘要

Virtual Private Cloud (VPC) is an emerging cloud environment used to provide more secure data communication. VPC provides authentic communication channel for secure communication between the cloud participants. The cloud jobs and the description of the runtime cloud events must be evaluated to provide flawless VPC service. Although VPC provides security in network services, it has to be enriched with internal and external platform level security features. In this regard, secure job service schemes ensure elimination of attacks, unauthorized jobs, improper accesses and intrusions in VPC. These irrelevant tasks (activities) can be isolated before initiating job scheduling process. Particularly, providing security for zero-trust cloud environment is more challenging task. Zero-trust cloud environment has completely vulnerable trust model on both internal and external circumstances. The proposed Machine Learning Based Secure Cloud Job Services (MLSCS) is implemented to provide multi-level security in this zero-trust cloud job servicing system. The proposed MLSCS develops Multi-Server Queue Management techniques, Reinforcement Learning based deep Q Matrix (RL-Q Matrix) techniques, Authentic VPC configuration and VPC Genetic Algorithm Network (VGAN) for establishing security practices in complex job handling system. MLSCS applies effective techniques for eliminating irrelevant cloud jobs to reduce the scheduler complexity and processor utilization. In this work, irrelevant jobs are considered as the jobs that are not appropriate for particular VPC scheduling policies and security principles (attacks). These jobs are identified through various key validation procedures and VPC policy determination procedures. These jobs are eliminated and prohibited in to job scheduler. Consequently, the legitimate jobs are securely forwarded in to job scheduler through multi-server queues. In the experimental setup, the proposed MLSCS is compared with existing schemes such as Reinforcement Learning Based Distributed Heterogeneous Servicing technique (RLDH), Cat Swarm Optimization Based Job Servicing technique (CSOS) and Fuzzy Based Security-Driven Servicing technique (FSDS). The results show the MLSCS delivers 5% to 8% optimal results than existing schemes.
机译:虚拟私有云(VPC)是用于提供更安全的数据通信的新兴云环境。 VPC提供真实的通信通道,可在云参与者之间安全通信。必须评估云作业和运行时云事件的描述以提供完美的VPC服务。虽然VPC在网络服务中提供安全性,但必须丰富内部和外部平台级安全功能。在这方面,安全的作业服务计划确保消除VPC中的攻击,未经授权的作业,不正确的访问和入侵。在启动作业调度过程之前,可以隔离这些无关任务(活动)。特别是,为零信任云环境提供安全性更具挑战性的任务。零信任云环境在内部和外部环境中具有完全脆弱的信任模型。基于机器学习的安全云作业服务(MLSCS)被实现为在该零信任云作业维修系统中提供多级安全性。该提议的MLSCS开发了多服务器队列管理技术,基于增强学习的深Q矩阵(RL-Q矩阵)技术,真正的VPC配置和VPC遗传算法网络(VPC),用于在复杂作业处理系统中建立安全实践。 MLSCS应用有效的技术来消除无关的云工作,以降低调度程序复杂性和处理器利用率。在这项工作中,无关的工作被视为不适合特定VPC调度政策和安全原则(攻击)的工作。通过各种关键验证程序和VPC策略确定程序来确定这些作业。这些作业被淘汰并禁止作业调度程序。因此,合法作业通过多服务器队列安全地转发给Job Scheduler。在实验设置中,将所提出的MLSC与现有方案进行比较,例如基于钢筋基于学习的分布式异构维修技术(RLDH),CAT群优化的作业维修技术(CSOS)和基于模糊的安全驱动的维修技术(FSD)。结果表明,MLSCS比现有方案提供5%至8%的最佳结果。

著录项

  • 来源
    《Computers & Security》 |2021年第10期|102379.1-102379.14|共14页
  • 作者单位

    School of Computing Science and Engineering VIT Bhopal India;

    Department of Electronics and Communication Engineering Koneru Lakshmaiah Education Foundation Guntur India;

    Department of Electronics and Communication Engineering Koneru Lakshmaiah Education Foundation Guntur India;

    School of Information Technology and Engineering VIT Vellore India;

    Department of Electronics and Communication Engineering Koneru Lakshmaiah Education Foundation Guntur India;

    Department of Electronics and Communication Engineering Koneru Lakshmaiah Education Foundation Guntur India;

    School of Electronics and Information Engineering Anhui University P.R. China;

    Electrical Engineering and Computer Science Vanderbilt University Tennessee US United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cloud system; Security; Zero-trust environment; Job transactions; Machine learning and job analysis;

    机译:云系统;安全;零信任环境;工作交易;机器学习和工作分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号