首页> 外文期刊>Computers & Security >A novel architecture for web-based attack detection using convolutional neural network
【24h】

A novel architecture for web-based attack detection using convolutional neural network

机译:一种使用卷积神经网络的基于Web的攻击检测的新架构

获取原文
获取原文并翻译 | 示例

摘要

Unprotected Web applications are vulnerable places for hackers to attack an organization's network. Statistics show that 42% ofWeb applications are exposed to threats and hackers. Web requests that Web users request from Web applications are manipulated by hackers to control Web servers. Web queries are detected to prevent manipulations of hacker's attacks. Web attack detection is extremely essential in information distribution over the past decades. Anomaly methods based on machine learning are preferred in the Web application security. This present study aimed to propose an anomaly-based Web attack detection architecture in a Web application using deep learning methods. The architecture structure consists of data preprocess and Convolution Neural Network (CNN) steps. To prove the suitability and success of the proposed CNN architecture, CSIC2010v2 datasets were used. The proposed architecture performed detection of Web attacks, using anomaly-based detection type. Based on the experimental results of the study, the proposed CNN deep learning architecture presented successful outcomes.
机译:未受保护的Web应用程序是黑客攻击组织网络的易受攻击的地方。统计数据显示,42%的WEB申请暴露于威胁和黑客。 Web用户从Web应用程序请求的Web请求由黑客操纵以控制Web服务器。检测到Web查询以防止黑客操纵攻击。在过去几十年中,网络攻击检测对于信息分布非常重要。基于机器学习的异常方法是Web应用程序安全性的优选。本研究旨在使用深度学习方法提出在Web应用程序中的基于异常的Web攻击检测架构。架构结构包括数据预处理和卷积神经网络(CNN)步骤。为了证明所提出的CNN架构的适用性和成功,使用CSIC2010v2数据集。建议的架构使用基于异常的检测类型进行了Web攻击的检测。基于该研究的实验结果,拟议的CNN深度学习架构提出了成功的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号