首页> 外文期刊>Computers & Security >JOWMDroid: Android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters
【24h】

JOWMDroid: Android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters

机译:JOWMDROID:基于具有重量映射和分类器参数的联合优化的功能加权的Android恶意软件检测

获取原文
获取原文并翻译 | 示例

摘要

Android malware detection is an important problem that must be urgently studied and solved. Machine learning-based methods first extract features from applications and then build a classifier using machine learning algorithms to distinguish malicious and benign applications. In most of the existing work, the difference in feature importance has been ignored, or the calculation of feature weights is irrelevant to the classification model. To address these issues, this paper proposes a novel Android malware detection scheme based on feature weighting with the joint optimization of weight-mapping and classifier parameters, called JOWMDroid. First, features of eight categories are extracted from the Android application package and then a certain number of the most important features are selected using information gain for malware detection. Next, an initial weight is calculated for each selected feature via three machine learning models and then five weight-mapping functions are designed to map the initial weights to the final weights. Finally, the parameters of the weight-mapping function and classifier are jointly optimized by the differential evolution algorithm. The experimental results reveal that the proposed method outperforms four state-of-the-art feature weighting methods and makes the weight-aware classifiers more competitive.
机译:Android Malware检测是必须迫切地研究和解决的重要问题。基于机器学习的方法首先从应用程序中提取功能,然后使用机器学习算法构建分类器以区分恶意和良性应用。在大多数现有工作中,忽略了特征重要性的差异,或者特征权重的计算与分类模型无关。为了解决这些问题,本文提出了一种基于特征加权的新颖的Android恶意软件检测方案,其具有重量映射和分类器参数的联合优化,称为JOWMDroid。首先,从Android应用程序包中提取八类的功能,然后使用信息增益来选择一定数量的最重要的功能以进行恶意软件检测。接下来,通过三种机器学习模型计算每个所选特征的初始重量,然后设计五个重量映射函数以将初始权重映射到最终权重。最后,通过差分演化算法共同优化了权重映射函数和分类器的参数。实验结果表明,所提出的方法优于四种最先进的特征加权方法,使重量感知的分类器更具竞争力。

著录项

  • 来源
    《Computers & Security》 |2021年第1期|102086.1-102086.14|共14页
  • 作者

    Lingru Cai; Yao Li; Zhi Xiong;

  • 作者单位

    Department of Computer Science and Technology Shantou University Shantou 515063 China Key Laboratory of Intelligent Manufacturing Technology (Shantou University) Ministry of Education Shantou University Shantou 515063 China;

    Department of Computer Science and Technology Shantou University Shantou 515063 China;

    Department of Computer Science and Technology Shantou University Shantou 515063 China Key Laboratory of Intelligent Manufacturing Technology (Shantou University) Ministry of Education Shantou University Shantou 515063 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Android; Malware detection; Feature weighting; Mapping function; Joint optimization;

    机译:安卓;恶意软件检测;功能加权;映射功能;联合优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号