首页> 外文期刊>Computers & Security >A tfidfvectorizer and singular value decomposition based host intrusion detection system framework for detecting anomalous system processes
【24h】

A tfidfvectorizer and singular value decomposition based host intrusion detection system framework for detecting anomalous system processes

机译:基于TFIDFvectorizer和奇异值分解的主机入侵检测系统框架,用于检测异常系统过程

获取原文
获取原文并翻译 | 示例

摘要

Host based intrusion detection systems (HIDSs) are indispensable tools for providing a comprehensive security solution. They are capable of detecting host specific attacks, which cannot be detected using network based intrusion detection systems (NIDSs). This paper proposes a novel tfidfvectorizer and truncated singular value decomposition (SVD) based host intrusion detection system (HIDS) framework for identification of anomalous system processes in real time. The proposed HIDS framework takes the system call trace files as its input and transforms them into n-gram feature vector representational models. The framework then uses a vectorization technique called the tfid/uectorizer to compute the tfidf values of the n-gram terms of the transformed feature vectors. Dimensionality reduction of the transformed n-gram feature vectors are then carried out using truncated SVD based on their tfidf values. The dimensionality reduced tfidfvectorized n-gram feature vectors are finally provided as inputs to various machine learning based classifier models to determine whether the corresponding system call trace files are normal or anomalous. Experimental results on the benchmark ADFA-LD and ADFA-WD datasets show that the proposed HIDS framework effectively detects anomalous system processes with high accuracy and low processing overhead. It is also shown to outperform other HIDS frameworks proposed in the literature.
机译:基于主机的入侵检测系统(HIDSS)是提供全面的安全解决方案的必不可少的工具。它们能够检测宿主特定攻击,该攻击不能使用基于网络的入侵检测系统(NIDS)来检测。本文提出了一种新颖的TFIDFvectorizer和基于截断的奇异值分解(SVD)的主机入侵检测系统(HID)框架,用于实时识别异常系统过程。建议的HIDS框架将系统调用跟踪文件作为其输入,并将其转换为N-Gram特征向量代表性模型。该框架然后使用称为TFID / utorizer的矢量化技术来计算变换特征向量的N-Gram术语的TFIDF值。然后基于其TFIDF值使用截短的SVD进行转化的N-GRAM特征载体的维度降低。最终提供维度降低的TFIDF传输的N-GRAM特征向量作为基于机器学习的分类器模型的输入,以确定相应的系统呼叫跟踪文件是否正常或异常。基准ADFA-LD和ADFA-WD数据集上的实验结果表明,所提出的HIDS框架有效地检测高精度和低处理开销的异常系统过程。它也显示出优于文献中提出的其他隐藏框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号