首页> 外文期刊>Computers & Security >Unsupervised feature selection and cluster center initialization based arbitrary shaped clusters for intrusion detection
【24h】

Unsupervised feature selection and cluster center initialization based arbitrary shaped clusters for intrusion detection

机译:无监督的特征选择和集群中心基于入侵检测的任意形状簇

获取原文
获取原文并翻译 | 示例

摘要

The massive growth of data in the network leads to attacks or intrusions. An intrusion detection system detects intrusions from high volume datasets but increases complexities. A network generates a large number of unlabeled data that is free from labeling costs. Unsupervised feature selection handles these data and reduces computational complexities. In this paper, we have proposed a clustering method based on unsupervised feature selection and cluster center initialization for intrusion detection. This method computes initial centers using sets of semi-identical instances, which indicate dense data space and avoid outliers as initial cluster centers. A spatial distance between data points and cluster centers create micro-clusters. Similar micro-clusters merge into a cluster that is an arbitrary shape. The proposed cluster center initialization based clustering method performs better than basic clustering, which takes fewer iterations to form final clusters and provides better accuracy. We simulated a wormhole attack and generated the Wormhole dataset in the mobile ad-hoc network in NS-3. Micro-clustering methods have executed on different network datasets (KDD, CICIDS2017, and Wormhole dataset), which outperformed for new attacks or those contain few samples. Experimental results confirm that the proposed method is suitable for LAN and mobile ad-hoc network, varying data density, and large datasets.
机译:网络中数据的大规模增长导致攻击或入侵。入侵检测系统检测来自大卷数据集的入侵,但增加了复杂性。网络生成大量未标记的数据,这些数据无标记成本。无监督的功能选择处理这些数据并降低计算复杂性。在本文中,我们提出了一种基于无监督特征选择和集群中心初始化的聚类方法,用于入侵检测。此方法使用一组半相同实例计算初始中心,这些情况指示密集数据空间并避免异常值作为初始集群中心。数据点和群集中心之间的空间距离创建微集群。类似的微簇合并成是任意形状的簇。基于群集中心初始化的群集方法的群集方法比基本群集更好,这需要更少的迭代来形成最终集群并提供更好的准确性。我们模拟了虫洞攻击并在NS-3中的移动ad-hoc网络中生成了沃尔霍尔数据集。微聚类方法已经在不同的网络数据集(KDD,Cicids2017和WormHole数据集)上执行,这对于新的攻击而言,或者那些含有少量样品。实验结果证实,该方法适用于LAN和移动ad-hoc网络,不同的数据密度和大型数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号