首页> 外文期刊>Computers & Security >Deep autoencoders as anomaly detectors: Method and case study in a distributed water treatment plant
【24h】

Deep autoencoders as anomaly detectors: Method and case study in a distributed water treatment plant

机译:深度自动化器作为异常探测器:分布式水处理厂的方法和案例研究

获取原文
获取原文并翻译 | 示例

摘要

Industrial Control Systems (ICS) are found in critical infrastructure, such as, water treatment plants and oil refineries. ICS are often the target of cyber-attacks leading to undesirable consequences. It is essential to detect process anomalies resulting from such attacks before appropriate defensive actions are considered. In this work, a deep autoencoder-based anomaly detector (DAE) is proposed. DAE is trained using data collected during normal operation of a plant. The detection effectiveness of three variants of DAE was experimentally evaluated on an operational Secure Water Treatment (SWaT) plant. Further, the amount of plant design knowledge needed to design DAE was compared with that needed to create design-centric approaches for anomaly detection. Experimental results indicate that the proposed DAE, constructed with minimal design knowledge, is effective in detecting process anomalies resulting due to single and multi-point coordinated attacks with high detection rate and few false alarms.
机译:工业控制系统(ICS)在关键基础设施中被发现,例如水处理厂和炼油厂。 IC通常是网络攻击的目标,导致不良后果。在考虑适当的防御行动之前,必须检测由此类攻击产生的过程异常。在这项工作中,提出了一种深度自身拓码的异常检测器(DAE)。使用植物正常运行期间收集的数据训练DAE。在操作安全水处理(SWAT)植物的实验评估了DAE三种变体的检测效果。此外,将DAE所需的植物设计知识的数量与创建设计为中心的异常检测方法进行比较。实验结果表明,具有最小设计知识构建的拟议的DAE在检测过程异常中是有效的,导致由于单点和多点协调攻击具有高检测率和诸多错误警报而导致的过程异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号