首页> 外文期刊>Computers & Security >Deepdom: Malicious domain detection with scalable and heterogeneous graph convolutional networks
【24h】

Deepdom: Malicious domain detection with scalable and heterogeneous graph convolutional networks

机译:深度:具有可扩展和异构图形卷积网络的恶意域检测

获取原文
获取原文并翻译 | 示例

摘要

As an essential network service, the Domain Name System (DNS) is widely abused by attackers, making malicious domain detection a crucial task when combating cybercrimes. The increasing sophistication of attackers calls for new detection methods against novel threats and evasions. In this paper, we analyze the DNS scene and design an intelligent malicious domain detection system, named DeepDom. With joint consideration of both domain's local features and their global associations, DeepDom is more accurate and is harder for attackers to evade. In DeepDom, we first represent the DNS scene as a Heterogeneous Information Network (HIN) with diverse entities like clients, domains, IP addresses, and accounts to capture richer information. Then, considering the heterogeneous and dynamic nature of DNS, we propose a novel Graph Convolutional Network (GCN) method named SHetGCN to inductively classify domain nodes in the HIN. By guiding the convolution operations with meta-path based short random walks, SHetGCN can jointly handle node features together with structural information and support inductive node embedding. We build a prototype of DeepDom and validate its effectiveness with comprehensive experiments over the DNS data collected from a real-world network, CERNET2. The comparison results demonstrate that our approaches outperform other state-of-the-art techniques.
机译:作为必不可少的网络服务,域名系统(DNS)被攻击者广泛滥用,在打击网络犯罪时使恶意域检测成为一个重要任务。攻击者的复杂程度越来越复杂地要求新的检测方法对新的威胁和灭绝。在本文中,我们分析了DNS场景并设计了一个名为Deptom的智能恶意域检测系统。通过联合审议域名的本地特征及其全球协会,深度更准确,攻击者逃避更难。在深度,我们首先将DNS场景称为异构信息网络(HIN),具有不同实体,如客户端,域,IP地址和帐户,以捕获更丰富的信息。然后,考虑到DNS的异构和动态性质,我们提出了一种名为ShetGCN的新颖的图表卷积网络(GCN)方法,以归视Hin中的域节点。通过引导基于元路径的短随机播放的卷积操作,ShetGCN可以共同处理节点功能以及结构信息并支持电感节点嵌入。我们建立了深度的原型,并验证其在从真实网络,Cernet2收集的DNS数据上进行综合实验。比较结果表明,我们的方法优于其他最先进的技术。

著录项

  • 来源
    《Computers & Security》 |2020年第12期|102057.1-102057.16|共16页
  • 作者单位

    Institute for Network Sciences and Cyberspace Tsinghua University China National Research Center for Information Science and Technology Beijing China;

    Institute for Network Sciences and Cyberspace Tsinghua University China National Research Center for Information Science and Technology Beijing China;

    Institute for Network Sciences and Cyberspace Tsinghua University China National Research Center for Information Science and Technology Beijing China;

    National Computer Network Emergency Response Technical Team/Coordination Center Beijing China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Malicious domain detection; Heterogeneous information network; Graph convolutional networks; Anomaly detection; Meta-path;

    机译:恶意域检测;异构信息网络;图形卷积网络;异常检测;梅塔路径;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号