首页> 外文期刊>Computers & Security >Scalable and robust unsupervised android malware fingerprinting using community-based network partitioning
【24h】

Scalable and robust unsupervised android malware fingerprinting using community-based network partitioning

机译:使用基于社区的网络分区的可扩展和强大无监督的Android恶意软件指纹识别

获取原文
获取原文并翻译 | 示例

摘要

The daily amount of Android malicious applications (apps) targeting the app repositories is increasing, and their number is overwhelming the process of fingerprinting. To address this issue, we propose an enhanced Cypider framework, a set of techniques and tools aiming to perform a systematic detection of mobile malware by building a scalable and obfuscation resilient similarity network infrastructure of malicious apps. Our approach is based on our proposed concept, namely malicious community, in which we consider malicious instances that share common features are the most likely part of the same malware family. Using this concept, we presumably assume that multiple similar Android apps with different authors are most likely to be malicious. Specifically, Cypider leverages this assumption for the detection of variants of known malware families and zero-day malicious apps. Cypider applies community detection algorithms on the similarity network, which extracts sub-graphs considered as suspicious and possibly malicious communities. Furthermore, we propose a novel fingerprinting technique, namely community fingerprint, based on a one-class machine learning model for each malicious community. Besides, we proposed an enhanced Cypider framework, which requires less memory, ≈ x650%, and less time to build the similarity network, ≈ x700, compared to the original version, without affecting the fingerprinting performance of the framework. We introduce a systematic approach to locate the best threshold on different feature content vectors, which simplifies the overall detection process. Cypider shows excellent results by detecting 60% - 80% coverage of the malware dataset in one detection iteration with higher precision 85% - 99% in the detected malicious communities. On the other hand, the community fingerprints are promising as we achieved 86%, 93%, and 94% in the detection of the malware family, general malware, and benign apps respectively.
机译:针对应用程序存储库的Android恶意应用程序(应用程序)的日常数量正在增加,并且它们的号码压倒了指纹的过程。为解决此问题,我们提出了一种增强的Cypider框架,这是一组技术和工具,其旨在通过构建恶意应用程序的可扩展和混淆的弹性相似性网络基础架构来执行移动恶意软件的系统检测。我们的方法是基于我们所提出的概念,即恶意社区,其中我们考虑分享共享常见功能的恶意实例是同一恶意软件家庭的最有可能的一部分。使用这一概念,我们可能会假设具有不同作者的多个类似的Android应用程序最有可能是恶意的。具体而言,Cypider利用此假设检测已知恶意软件系列和零日恶意应用程序的变体。 Cypider在相似度网络上应用社区检测算法,提取被视为可疑和可能恶意社区的子图。此外,我们提出了一种新颖的指纹技术,即社区指纹,基于每个恶意社区的单级机器学习模型。此外,我们提出了一种增强的Cypider框架,这需要更少的内存,≈x650%,更少的时间构建相似性网络,≈x700相比,与原始版本相比,而不影响框架的指纹性能。我们介绍了系统的方法来定位不同特征内容向量的最佳阈值,这简化了整体检测过程。 Cypider通过在一个检测迭代中检测到60%-80%的恶意软件数据集的覆盖率,在检测到的恶意社区中的精度高85%-99%的检测迭代中的60%-80%。另一方面,社区指纹分别在检测到恶意软件系列,常规恶意软件和良性应用程序中的86%,93%和94%的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号