首页> 外文期刊>Computers & Security >POBA-GA: Perturbation optimized black-box adversarial attacks via genetic algorithm
【24h】

POBA-GA: Perturbation optimized black-box adversarial attacks via genetic algorithm

机译:POBA-GA:通过遗传算法进行扰动优化的黑匣子逆势攻击

获取原文
获取原文并翻译 | 示例

摘要

Most deep learning models are easily vulnerable to adversarial attacks. Various adversarial attacks are designed to evaluate the robustness of models and develop defense model. Currently, adversarial attacks are brought up to attack their own target model with their own evaluation metrics. And most of the black-box adversarial attack algorithms cannot achieve the expected success rate compared with white-box attacks. In this paper, comprehensive evaluation metrics are brought up for different adversarial attack methods. A novel perturbation optimized black-box adversarial attack based on genetic algorithm (POBA-GA) is proposed for achieving white-box comparable attack performances. Approximate optimal adversarial examples are evolved through evolutionary operations including initialization, selection, crossover and mutation. Fitness function is specifically designed to evaluate the example individual in both aspects of attack ability and perturbation control. Population diversity strategy is brought up in evolutionary process to promise the approximate optimal perturbations obtained. Comprehensive experiments are carried out to testify POBA-GA's performances. Both simulation and application results prove that our method is better than current state-of-art black-box attack methods in aspects of attack capability and perturbation control. (C) 2019 Elsevier Ltd. All rights reserved.
机译:大多数深度学习模型很容易容易受到对抗的攻击。各种对抗性攻击旨在评估模型和发展防御模型的鲁棒性。目前,对抗对抗攻击是通过自己的评估指标攻击自己的目标模型。与白盒攻击相比,大多数黑匣子对抗性攻击算法无法达到预期的成功率。在本文中,为不同的逆势攻击方法提出了综合评估度量。提出了一种基于遗传算法(POBA-GA)的新型扰动优化的黑盒普发出现,用于实现白盒可比攻击性能。通过包括初始化,选择,交叉和突变的进化操作来演化近似最佳的对抗示例。健身功能专门用于评估攻击能力和扰动控制的两个方面的示例性。在进化过程中提出了种群多样性战略,以承诺获得的近似最佳扰动。进行综合实验以证明Poba-Ga的表演。仿真和应用结果都证明了我们的方法优于当前攻击能力和扰动控制方面的最先进的黑匣子攻击方法。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号