首页> 外文期刊>Computers & Security >Detection method of domain names generated by DGAs based on semantic representation and deep neural network
【24h】

Detection method of domain names generated by DGAs based on semantic representation and deep neural network

机译:基于语义表示和深神经网络生成的DGA生成的域名检测方法

获取原文
获取原文并翻译 | 示例

摘要

Botnets have become one of the main threats to cyberspace security currently. More and more bots utilize the domain generation algorithm (DGA) to generate malicious domain names to communicate with Command & Control (C&C) servers. A well-designed DGA can bypass the traditional detection methods such as sinkhole and rule filtering, which raises new challenges to cyberspace security. In the field of machine learning, the n-gram is a semantic model that characterizes the relationship among neighboring morphemes while deep convolutional neural networks have a robust capability in processing information with translation-invariant properties. In this paper, we combined n-gram and a deep convolutional neural network and then proposed a novel n-gram combined character based domain classification (n-CBDC) model. The n-CBDC model runs in an end-to-end way that doesn't require hand-extracted features or domain name system (DNS) contextual information; it only needs to input the domain name itself and can automatically estimate the probability that the domain name was generated by DGAs. Experiments on real-world data show that the proposed method can effectively detect domain names generated by DGAs with 98.69% average detection rate and 0.9829 average F-measure, and significantly outperformed the state-of-art methods in detecting pronounceable and wordlist-based DGA domain names with more than 93.89% detection rate. Therefore, the proposed detection method is robust and has a wide range of adaptability in detecting various types of domain names generated by DGAs. (C) 2019 Elsevier Ltd. All rights reserved.
机译:僵尸网络已成为目前对网络空间安全性的主要威胁之一。越来越多的机器人利用域生成算法(DGA)来生成恶意域名以与命令和控制(C&C)服务器进行通信。精心设计的DGA可以绕过传统的检测方法,如下沉孔和规则过滤,这对网络空间安全性提出了新的挑战。在机器学习领域,n-gram是一个语义模型,其特征在于相邻的语素之间的关系,而深度卷积神经网络在处理具有翻译不变特性的信息中具有稳健的能力。在本文中,我们组合了n-gram和深度卷积神经网络,然后提出了一种新的N-GRAM组合字符的基于域分类(N-CBDC)模型。 N-CBDC模型以端到端的方式运行,不需要手工提取的功能或域名系统(DNS)上下文信息;它只需要输入域名本身,可以自动估计DGAS生成的域名的概率。真实数据的实验表明,该方法可以有效地检测DGA生成的域名,平均检测率为98.69%和平均F测量值0.9829,并显着优于检测透明和基于词汇表的DGA方面的最先进方法域名有超过93.89%的检测率。因此,所提出的检测方法是坚固的,并且在检测DGA生成的各种类型的域名方面具有广泛的适应性。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号