首页> 外文期刊>Computers & Security >Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms
【24h】

Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms

机译:结合机器学习算法为云环境构建基于深度神经网络的IDS的智能方法

获取原文
获取原文并翻译 | 示例

摘要

The appealing features of Cloud Computing continue to fuel its adoption and its integration in many sectors such industry, governments, education and entertainment. Nevertheless, uploading sensitive data to public cloud storage services poses security risks such as integrity, availability and confidentiality to organizations. Moreover, the open and distributed (decentralized) structure of the cloud has resulted this class of computing, prone to cyber attackers and intruders. Thereby, it is imperative to develop an anomaly network intrusion system to detect and prevent both inside and outside assaults in cloud environment with high detection precision and low false warnings. In this work, we propose an intelligent approach to build automatically an efficient and effective Deep Neural Network (DNN) based anomaly Network IDS using a hybrid optimization framework (IGASAA) based on Improved Genetic Algorithm (IGA) and Simulated Annealing Algorithm (SAA). The IDS resulted is called "MLIDS" (Machine Learning based Intrusion Detection System). Genetic Algorithm (GA) is improved through optimization strategies, namely Parallel Processing and Fitness Value Hashing, which reduce execution time, convergence time and save processing power. Moreover, SAA was incorporated to IGA with the aim to optimize its heuristic search. Our approach consists of using IGASAA in order to search the optimal or near-optimal combination of most relevant values of the parameters included in construction of DNN based IDS or impacting its performance, like feature selection, data normalization, architecture of DNN, activation function, learning rate and Momentum term, which ensure high detection rate, high accuracy and low false alarm rate. For simulation and validation of the proposed method, CloudSim 4.0 simulator platform and three benchmark IDS datasets were used, namely CICIDS2017, NSL-KDD version 2015 and CIDDS-001. The implementation results of our model demonstrate its ability to detect intrusions with high detection accuracy and low false alarm rate, and indicate its superiority in comparison with state-of-the-art methods. (C) 2019 Elsevier Ltd. All rights reserved.
机译:云计算的吸引人的功能继续推动其在工业,政府,教育和娱乐等许多领域的采用和集成。但是,将敏感数据上传到公共云存储服务会带来安全风险,例如组织的完整性,可用性和机密性。此外,云的开放和分布式(分散)结构导致了这类计算,容易受到网络攻击者和入侵者的攻击。因此,迫切需要开发一种异常网络入侵系统,以高检测精度和低虚警率来检测和预防云环境中的内部和外部攻击。在这项工作中,我们提出了一种智能方法,该方法使用基于改进遗传算法(IGA)和模拟退火算法(SAA)的混合优化框架(IGASAA)自动构建高效且有效的基于深度神经网络(DNN)的异常网络IDS。得到的IDS被称为“ MLIDS”(基于机器学习的入侵检测系统)。遗传算法(GA)通过优化策略(即并行处理和适应性值散列)得到了改进,从而减少了执行时间,收敛时间并节省了处理能力。此外,SAA被合并到IGA中,旨在优化其启发式搜索。我们的方法包括使用IGASAA来搜索基于DNN的IDS的构造中包含的参数的最相关值的最佳或接近最佳组合,或影响其性能,例如功能选择,数据标准化,DNN的架构,激活功能,学习率和动量项,确保高检测率,高精度和低误报率。为了模拟和验证所提出的方法,使用了CloudSim 4.0仿真器平台和三个基准IDS数据集,即CICIDS2017,NSL-KDD版本2015和CIDDS-001。我们模型的实施结果证明了其以较高的检测精度和较低的误报率检测入侵的能力,并表明了其与最新方法相比的优越性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号