首页> 外文期刊>Computers & Security >Abnormal detection method of industrial control system based on behavior model
【24h】

Abnormal detection method of industrial control system based on behavior model

机译:基于行为模型的工控系统异常检测方法

获取原文
获取原文并翻译 | 示例

摘要

In the field of industrial control systems (ICSs), a broad application background and the different characteristics of a system determine the diversity and particularity of an intrusion detection system. We propose an abnormal detection method based on a behavior model. The method extracts behavior data sequences from industrial control network traffic, builds a normal behavior model of the controller and the controlled process of an ICS, and compares tested behavior data and prediction behavior data to detect any exceptions. According to experimental results, our method can effectively detect abnormal behavior data and control program manipulation attacks. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在工业控制系统(ICSs)领域,广泛的应用背景和系统的不同特性决定了入侵检测系统的多样性和特殊性。我们提出了一种基于行为模型的异常检测方法。该方法从工业控制网络流量中提取行为数据序列,建立控制器的正常行为模型和ICS的受控过程,并比较测试的行为数据和预测行为数据以检测任何异常。根据实验结果,我们的方法可以有效地检测异常行为数据并控制程序操纵攻击。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号