首页> 外文期刊>Computers & Security >How to trick the Borg: threat models against manual and automated techniques for detecting network attacks
【24h】

How to trick the Borg: threat models against manual and automated techniques for detecting network attacks

机译:如何欺骗Borg:针对用于检测网络攻击的手动和自动技术的威胁​​模型

获取原文
获取原文并翻译 | 示例

摘要

Cyber attackers constantly craft new attacks previously unknown to the security community. There are two approaches for detecting such attacks: (1) employing human analysts who can observe the data and identify anomalies that correspond to malicious intent; and (2) utilizing unsupervised automated techniques, such as clustering, that do not rely on ground truth. We conduct a security analysis of the two approaches, utilizing attacks against a real-world website. Through two experiments-a user study with 65 security analysts and an experimental analysis of attack discovery using DBSCAN clustering-we compare the strategies and features employed by human analysts and clustering system for detecting attacks. Building on these observations, we propose threat models for the human analysis process and for the unsupervised techniques when operating in adversarial settings. Based on our analysis, we propose and evaluate two attacks against the DBSCAN clustering algorithm and a defense. Finally, we discuss the implications of our insights for hybrid systems that utilize the strengths of automation and of human analysis to complement their respective weaknesses. (C) 2018 Elsevier Ltd. All rights reserved.
机译:网络攻击者不断地进行安全社区以前未知的新攻击。有两种方法可以检测到此类攻击:(1)雇用可以观察数据并识别与恶意意图相对应的异常的分析人员; (2)利用不依赖地面事实的无监督自动化技术,例如聚类。我们利用对真实网站的攻击来对这两种方法进行安全性分析。通过两个实验(对65位安全分析师的用户研究和使用DBSCAN集群的攻击发现的实验分析),我们比较了人类分析师和集群系统用于检测攻击的策略和功能。在这些观察的基础上,我们提出了在对抗性环境中进行操作时,人体分析过程和无监督技术的威胁​​模型。根据我们的分析,我们提出并评估了针对DBSCAN聚类算法和防御的两种攻击。最后,我们讨论了我们的见解对混合系统的影响,这些系统利用自动化和人工分析的优势来弥补各自的弱点。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Computers & Security》 |2019年第3期|25-40|共16页
  • 作者单位

    Univ Maryland, Inst Adv Comp Studies, 2126 AVW Bldg, College Pk, MD 20742 USA;

    Univ Maryland, Inst Adv Comp Studies, 2126 AVW Bldg, College Pk, MD 20742 USA;

    Fraunhofer Ctr Expt Software Engn, 5825 Univ Res Ct,Suite 1300, College Pk, MD 20740 USA|Univ N Carolina, CIS Bldg,601 S Coll Rd, Wilmington, NC 28403 USA;

    Univ Maryland, Inst Adv Comp Studies, 2126 AVW Bldg, College Pk, MD 20742 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cyber attack; Human factors; Unsupervised learning; DBSCAN; Log analysis;

    机译:网络攻击;人为因素;无监督学习;DBSCAN;日志分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号