首页> 外文期刊>Computers & Security >Automatic generation of HTTP intrusion signatures by selective identification of anomalies
【24h】

Automatic generation of HTTP intrusion signatures by selective identification of anomalies

机译:通过选择性识别异常自动生成HTTP入侵签名

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a novel methodology to automatically generate HTTP intrusion signatures for Network Intrusion Detection Systems (NIDS). Our approach relies on the use of a service-specific, semantic-aware anomaly detection scheme that combines stochastic learning with a model structure based on the protocol specification. Each incoming payload for the target service is tagged with an anomaly score obtained from probabilistically matching it against the corresponding learned model of normal usage. For those payloads whose anomaly score exceeds a given threshold, a more detailed analysis is performed to extract the portions that contribute the most to the anomaly score. Such portions are then used to build up candidate intrusion signatures, using a merging process that combines them with already existing patterns in order to keep the signature database as simple as possible by avoiding redundancies. We report results obtained with a specific implementation of our proposal for web traffic. During our evaluation, we used a well-known signature-based NIDS that sits behind the anomaly detection system and is fed with the signatures automatically generated by the latter. Our results indicate that functioning in such a way translates into an improvement of the often tedious signature generation process. Furthermore, a visual inspection of the signatures reveals that the generation procedure is quite reliable, mimicking (and, in some cases, even improving) attack patterns manually generated by security analysts.This results in an increase of the overall detection performance of the composite signature- plus anomaly-based system.
机译:在本文中,我们介绍了一种新颖的方法来自动为网络入侵检测系统(NIDS)生成HTTP入侵签名。我们的方法依赖于使用特定于服务,语义感知的异常检测方案,该方案将随机学习与基于协议规范的模型结构结合在一起。目标服务的每个传入有效负载都标记有异常分数,该异常分数是通过将概率与相应的正常使用学习模型进行概率匹配而获得的。对于异常分数超过给定阈值的那些有效负载,将进行更详细的分析,以提取对异常分数贡献最大的部分。然后使用合并这些部分和已经存在的模式的合并过程,使用这些部分来构建候选入侵签名,以便通过避免冗余来使签名数据库尽可能简单。我们报告通过特定实施网络流量提案获得的结果。在评估过程中,我们使用了一个著名的基于签名的NIDS,它位于异常检测系统的后面,并由异常检测系统自动生成。我们的结果表明,以这种方式运行可以改善通常繁琐的签名生成过程。此外,通过目视检查签名可以发现生成过程非常可靠,可以模仿(在某些情况下甚至可以改善)安全分析师手动生成的攻击模式,从而提高了复合签名的整体检测性能-加上基于异常的系统。

著录项

  • 来源
    《Computers & Security》 |2015年第11期|159-174|共16页
  • 作者单位

    Department of Signal Theory, Telematics and Communications, Uniuersidad de Granada, ETSIIT-CITIC, C/Periodista Daniel Saucedo Aranda, S/N, Granada 18071, Spain;

    Department of Signal Theory, Telematics and Communications, Uniuersidad de Granada, ETSIIT-CITIC, C/Periodista Daniel Saucedo Aranda, S/N, Granada 18071, Spain;

    Department of Computer Science, Uniuersidad Carlos Ⅲ de Madrid, Auda. Uniuersidad 30, 28911 Leganes, Madrid, Spain;

    Mante Multidisciplinary Academic Unit, Uniuersidad Autonoma de Tamaulipas, Blud. Enrique Cardenas Gonzalez, 1201, 89800 Tamaulipas, Mexico;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Anomaly detection; Intrusion detection systems; Attack signature; Network security; Web application firewalls;

    机译:异常检测;入侵检测系统;攻击签名;网络安全;Web应用防火墙;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号