首页> 外文期刊>Computers & Security >Score normalization applied to adaptive biometric systems
【24h】

Score normalization applied to adaptive biometric systems

机译:分数归一化应用于自适应生物识别系统

获取原文
获取原文并翻译 | 示例

摘要

Biometric authentication systems have certain limitations. Recent studies have shown that biometric features may change over time, which can entail a decrease in recognition performance of the biometric system. An adaptive biometric system addresses this problem by adapting the biometric reference/template over time, thereby tracking the changes automatically. However, the use of these systems usually requires the adoption of a high threshold value to avoid the inclusion of impostor patterns into the genuine biometric reference. In this study, we hypothesize that score normalization procedures, which have been used to improve the recognition performance of biometric systems through a better refinement of their decision, can also improve the overall performance of adaptive systems. With such a normalization, a better threshold choice could also be made, which would then increase the number of genuine samples used for adaptation. To the best of our knowledge, this is the first investigation towards the use of score normalization to enhance adaptive biometric systems dealing with the change of user features over time. Through a systematic experimental design tested on two behavioral biometric traits, the obtained results indeed support our conjecture. Moreover, the experimental results show that the performance gain brought by adaptation can have a higher overall impact than score normalization alone.
机译:生物特征认证系统具有一定的局限性。最近的研究表明,生物特征可能会随时间而变化,这可能导致生物特征系统的识别性能下降。自适应生物识别系统通过随时间调整生物识别参考/模板来解决此问题,从而自动跟踪更改。但是,使用这些系统通常需要采用较高的阈值,以避免将冒名顶替者模式纳入真正的生物统计参考中。在这项研究中,我们假设分数归一化程序已被用来通过更好地改进其决策来提高生物识别系统的识别性能,但也可以改善自适应系统的整体性能。通过这样的归一化,还可以做出更好的阈值选择,这将增加用于适应的真实样本的数量。据我们所知,这是首次使用分数归一化来增强适应性生物识别系统,以应对用户特征随时间的变化。通过对两个行为生物特征进行测试的系统实验设计,获得的结果确实支持了我们的推测。此外,实验结果表明,与单独的分数归一化方法相比,自适应带来的性能提升具有更高的总体影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号