首页> 外文期刊>Computers & Security >Auto-detection of sophisticated malware using lazy-binding control flow graph and deep learning
【24h】

Auto-detection of sophisticated malware using lazy-binding control flow graph and deep learning

机译:使用延迟绑定控制流程图和深度学习自动检测复杂的恶意软件

获取原文
获取原文并翻译 | 示例

摘要

To date, industrial antivirus tools are mostly using signature-based methods to detect malware occurrences. However, sophisticated malware, such as metamorphic or polymorphic virus, can effectively evade those tools by using some advanced obfuscation techniques, including mutation and the dynamically executed contents (DEC) methods, which dynamically produce new executable code in the run-time. Common DEC methods used by malware programs are packing or calling external code. In the research community, the approach of program analysis to detect suspicious behaviors has been emerging recently to handle this problem. Control flow graph (CFG) is a suitable representation to capture common behaviors from various mutated samples of virus. However, the current typical CFG forms generated by state-of-the-art binary analysis tools, such as IDA Pro, do not precisely reflect the behaviors of DEC methods. Moreover, this approach suffers from an extremely heavy cost to conduct and analyze the CFGs from binaries. This drawback causes the method of formal behavior analysis to be virtually not applicable with real-world applications.
机译:迄今为止,工业防病毒工具大多使用基于签名的方法来检测恶意软件的出现。但是,诸如变态或多态病毒之类的复杂恶意软件可以通过使用一些先进的混淆技术(包括变异和动态执行内容(DEC)方法)来有效地逃避那些工具,这些方法可以在运行时动态生成新的可执行代码。恶意软件程序使用的常见DEC方法是打包或调用外部代码。在研究社区中,用于解决可疑行为的程序分析方法最近已经出现。控制流图(CFG)是从各种变异的病毒样本中捕获常见行为的合适表示。但是,由最新的二进制分析工具(例如IDA Pro)生成的当前典型CFG形式不能准确反映DEC方法的行为。此外,这种方法的缺点是从二进制文件执行和分析CFG的成本非常高。此缺点导致形式行为分析的方法实际上不适用于实际应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号