首页> 外文期刊>Computers & operations research >New variable-length data compression scheme for solution representation of meta-heuristics
【24h】

New variable-length data compression scheme for solution representation of meta-heuristics

机译:元启发式解决方案表示的新可变长度数据压缩方案

获取原文
获取原文并翻译 | 示例

摘要

Solution representation is an important aspect of the development of a meta-heuristic. However, most meta-heuristics focus on the algorithm aspect rather than the solution representation. As the scale of the optimization problem under study rises, the solution representation becomes ever more crucial because the computational performance tends to deteriorate for three reasons: (1) increased landscape complexity, (2) exponential growth of search space, and (3) costly function evaluation. In this study, data compression of solution representation is explored to improve the performance of meta-heuristics in terms of compression efficiency and solution quality. A proposed new data compression scheme variable-length solution representation compression for meta-heuristics - is developed and tested against benchmarked problem instances from the quadratic assignment problem library (QAPLIB) and additional large problem instances. The analyzed results indicate that the compressed solution representation scheme under a meta-heuristic framework performs well against the QAPLIB and large problem instances with less space complexity and computation time. (C) 2021 Elsevier Ltd. All rights reserved.
机译:解决方案表示是荟萃启发式发展的一个重要方面。然而,大多数元启发式焦点关注算法方面而不是解决方案表示。随着研究的优化问题的规模上升,解决方案表示变得更为重要,因为计算性能趋于恶化为三个原因:(1)增加景观复杂性,(2)搜索空间的指数增长,(3)昂贵功能评估。在这项研究中,探讨了解决方案表示的数据压缩,以提高在压缩效率和解决方案质量方面的荟萃启发式的性能。建议的新数据压缩方案可变长度解决方案表示元于启发式 - 从二次分配问题库(QAPLIB)和其他大问题实例的基准问题实例开发和测试。分析结果表明,元启发式框架下的压缩解决方案表示方案对QAPLIB和具有较少空间复杂度和计算时间的大问题实例执行良好。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号