首页> 外文期刊>Computers & operations research >A simple and effective hybrid genetic search for the job sequencing and tool switching problem
【24h】

A simple and effective hybrid genetic search for the job sequencing and tool switching problem

机译:一种简单有效的混合遗传搜索作业排序和工具切换问题

获取原文
获取原文并翻译 | 示例

摘要

The job Sequencing and tool Switching Problem (SSP) has been extensively studied in the field of operations research, due to its practical relevance and methodological interest. Given a machine that can load a limited amount of tools simultaneously and a number of jobs that require a subset of the available tools, the SSP seeks a job sequence that minimizes the number of tool switches in the machine. To solve this problem, we propose a simple and efficient hybrid genetic search based on a generic solution representation, a tailored decoding operator, efficient local searches and diversity management techniques. To guide the search, we introduce a secondary objective designed to break ties. These techniques allow to explore structurally different solutions and escape local optima. As shown in our computational experiments on classical benchmark instances, our algorithm significantly outperforms all previous approaches while remaining simple to apprehend and easy to implement. We finally report results on a new set of larger instances to stimulate future research and comparative analyses. (C) 2020 Elsevier Ltd. All rights reserved.
机译:由于其实际相关性和方法的利益,在运营研究领域已经广泛研究了作业排序和工具切换问题(SSP)。考虑到一台可以同时加载有限量的工具的机器以及需要可用工具子集的许多作业,SSP试图最小化机器中的工具交换机数量的作业序列。为了解决这个问题,我们提出了一种基于通用解决方案表示,量身定制的解码操作员,有效的本地搜索和分集管理技术的简单富有高效的混合遗传搜索。要指导搜索,我们介绍了辅助型饰有围绕的次要目标。这些技术允许探索结构不同的解决方案并逃避局部最优。如我们对古典基准实例的计算实验所示,我们的算法显着优于所有先前的方法,同时保持易于理解,易于实施。我们终于在一组新的较大情况下报告结果,以刺激未来的研究和比较分析。 (c)2020 elestvier有限公司保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号