首页> 外文期刊>Computers & operations research >A distributionally robust optimization approach for multi-product inventory decisions with budget constraint and demand and yield uncertainties
【24h】

A distributionally robust optimization approach for multi-product inventory decisions with budget constraint and demand and yield uncertainties

机译:具有预算约束和需求的多产品库存决策的分布稳健优化方法,并产生不确定性

获取原文
获取原文并翻译 | 示例

摘要

This study develops a distributionally robust optimization approach for inventory decisions for a retailer with limited budget ordering multiple products from multiple suppliers. The demand of a product is assumed to be dependent on the current inventory level. Uncertainties are involved in the demands and yields of the products with their means and standard deviations as the only known information. Using the distributionally robust optimization approach, the problem is formulated as a worst-case expected profit maximization model with a budget constraint. Through mathematical deduction, the developed model is transformed into a tractable convex programming model which can be solved efficiently. The closed-form solution for the order quantity using a Lagrange multiplier is proposed and the corresponding algorithm is presented in the case with one reliable or unreliable supplier. The retailer's ordering decisions are investigated when there are multiple identical or different suppliers, and the effects of yield uncertainties are also assessed. Numerical experiments are performed to illustrate the effectiveness and practicality of the proposed models and the solution approaches in dealing with demand and yield uncertainties. Furthermore, the impacts of parameters such as the budget, means and standard deviations of yields and demands, and the correlations between yields on retailer's ordering policies and performance are analyzed. Managerial insights in selecting suppliers are also provided. In particular, a bootstrapping method is used to estimate the means and standard deviations of the demand and yield distributions in a practical application, and the out-of-sample performance of the resulting optimal inventory policy is evaluated. (C) 2020 Elsevier Ltd. All rights reserved.
机译:本研究为零售商的库存决策开发了具有来自多个供应商的有限预算的零售商的库存决策的分布稳健优化方法。假设产品的需求取决于当前库存水平。不确定性涉及产品的需求和产量,其手段和标准偏差是唯一已知的信息。使用分布稳健的优化方法,该问题被制定为具有预算约束的最坏情况预期利润最大化模型。通过数学扣除,开发的模型被转换为可以有效解决的易诊凸编程模型。提出了使用拉格朗日乘法器的订单数量的闭合形式解决方案,并且在具有一个可靠或不可靠的供应商的情况下呈现相应的算法。当有多种相同或不同的供应商时,调查零售商的订购决定,也会评估产量不确定性的影响。进行数值实验以说明所提出的模型的有效性和实用性以及解决需求和产生不确定性的解决方法。此外,分析了诸如收益和需求的预算,手段和标准偏差等参数的影响以及零售商订购策略和性能的产量之间的相关性。还提供了选择供应商的管理洞察。特别地,用于估计在实际应用中需求和产量分布的手段和标准偏差,并评估所得到的最佳库存策略的采样超出性能。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号