首页> 外文期刊>Computers & operations research >Efficient solution approaches for locating electric vehicle fast charging stations under driving range uncertainty
【24h】

Efficient solution approaches for locating electric vehicle fast charging stations under driving range uncertainty

机译:在驾驶范围不确定性下定位电动车辆快速充电站的高效解决方案方法

获取原文
获取原文并翻译 | 示例

摘要

We seek to determine the best locations for electric vehicle fast charging stations under driving range uncertainty. Two stochastic programming based models have been recently proposed to handle the resulting stochastic flow refueling location problem: a first one maximizing the expected flow coverage of the network, a second one based on joint chance constraints. However, significant computational difficulties were encountered while solving large-size instances. We thus propose two efficient solution approaches for this problem. The first one is based on a new location-allocation type model for this problem and results in a MILP formulation, while the second one is a tabu search heuristic. Our numerical experiments show that when using the proposed MILP formulation, the computation time needed to provide guaranteed optimal solutions is significantly reduced as compared to the one needed when using the previously published MILP formulation. Moreover, our results also show that the tabu search method consistently provides good quality solutions within short computation times. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们寻求在驾驶范围不确定性下确定电动车辆快速充电站的最佳位置。最近已经提出了两种基于随机编程的模型来处理所产生的随机流动加油位置问题:第一一个最大化网络的预期流量覆盖,基于关节机会约束。然而,在解决大型实例的同时遇到了显着的计算困难。因此,我们为此问题提出了两种有效的解决方案方法。第一个是基于一个新的位置分配类型模型,用于这个问题,并导致静态配方,而第二个是禁忌搜索启发式。我们的数值实验表明,当使用所提出的MILP制剂时,与使用先前公布的MILP配方时,提供保证最佳解决方案所需的计算时间明显减少。此外,我们的结果还表明,禁忌搜索方法在短的计算时间内始终如一地提供良好的质量解决方案。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号