首页> 外文期刊>Computers & operations research >Tuning hyperparameters of a SVM-based water demand forecasting system through parallel global optimization
【24h】

Tuning hyperparameters of a SVM-based water demand forecasting system through parallel global optimization

机译:通过并行全局优化调整基于SVM的需水量预测系统的超参数

获取原文
获取原文并翻译 | 示例

摘要

Recently, the number of machine learning based water demand forecasting solutions has been significantly increasing. Different case studies have already reported practical results proving that accurate forecasts may support optimization of operations in Water Distribution Networks (WDN). However, tuning the hyper-parameters of machine leaning algorithms is still an open problem.This paper proposes a parallel global optimization model to optimize the hyperparameters of Support Vector Machine (SVM) regression trained to provide accurate water demand forecasts in the short-time horizon (i.e. 24 h). Every SVM has the first 6 hourly water consumptions as input features and a specific hourly water demand as target to be predicted, among the remaining 18. The Mean Average Percentage Error (MAPE), computed on leave-one-out validation, is the black-box objective function optimized.Moreover, a preliminary time-series clustering has been applied in order to evaluate if this can improve the accuracy of the forecasting mechanism. Time-series clustering implies that the overall number of SVMs, whose hyperparameters are optimized through parallel global optimization, increases, with a SVM trained for each cluster identified and for each hourly water demand to be predicted, making even more critical a quick tuning of the hyperparameters.Results on the urban water demand data in Milan prove that forecasting error is significantly low and that preliminary clustering allows for further reducing error while also improving computational performances. (C) 2018 Elsevier Ltd. All rights reserved.
机译:最近,基于机器学习的需水量预测解决方案的数量已大大增加。不同的案例研究已经报告了实际结果,证明了准确的预测可能会支持水分配网络(WDN)中运营的优化。然而,调整机器学习算法的超参数仍然是一个悬而未决的问题。本文提出了一种并行全局优化模型,以优化支持向量机(SVM)回归的超参数,该模型经过训练可以在短时间内提供准确的需水量预测(即24小时)。每个SVM都将前6个小时的用水量作为输入特征,并将特定的每小时用水量作为要预测的目标,在其余的18个中。基于留一法验证的平均平均百分比误差(MAPE)为黑色盒目标函数已优化。此外,已应用初步的时间序列聚类,以评估这是否可以提高预测机制的准确性。时间序列聚类意味着通过并行全局优化来优化其超参数的SVM总数会增加,对每个已识别的聚类和预测的每个小时需水量进行SVM训练,这使得对SVM的快速调整更为关键。米兰城市用水需求数据的结果证明,预测误差非常低,并且初步聚类可以进一步减少误差,同时还可以提高计算性能。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号