首页> 外文期刊>Computers & operations research >Lower bounds and compact mathematical formulations for spacing soft constraints for university examination timetabling problems
【24h】

Lower bounds and compact mathematical formulations for spacing soft constraints for university examination timetabling problems

机译:下限和紧凑的数学公式,用于间隔软约束解决大学考试时间表问题

获取原文
获取原文并翻译 | 示例

摘要

The examination timetabling problem (ETT) can be described as a set of exams to be scheduled over an examination session while respecting numerous hard and soft constraints. In this paper we consider the spacing soft constraints that seek to prevent students sitting more than one exam per day. Out of consideration for candidates, these soft constraints often feature in real ETT problems that academic institutions seek to solve. Work on ETT has tended to focus on heuristic approaches, and little effort has gone into developing lower bounds, although both are of practical and theoretical interest. For this study we consider formulations of these soft constraints as defined in the ITC2007 examination timetabling track. In existing mathematical formulations of these spacing soft constraints the number of equations is of the order of the square of the number of exams, and current solvers may face problems at runtime because of their large memory requirement. In this study we present a generic model for computing lower bounds, together with more compact formulations where the number of equations is of the order of the number of exams. Computational results on spacing soft constraints that seek to prevent students sitting more than one exam per day are an improvement on results obtained so far on lower bounds, and our new formulations yield a more compact model that gives better results than those given by existing formulations. (C) 2019 Elsevier Ltd. All rights reserved.
机译:考试时间表问题(ETT)可以描述为要在考试期间安排的一组考试,同时要考虑到许多硬性约束和软性约束。在本文中,我们考虑了间隔软约束,这些约束旨在防止学生每天参加超过一次考试。出于对候选人的考虑,这些软约束通常出现在学术机构寻求解决的实际ETT问题中。关于ETT的工作往往集中在启发式方法上,尽管在实践和理论上都感兴趣,但在开发下界方面所做的工作很少。在本研究中,我们考虑了ITC2007检查时间表中定义的这些软约束的公式。在这些间隔软约束的现有数学公式中,方程式的数量约为检查数量的平方,并且当前的求解器可能会在运行时由于存在大量内存需求而面临问题。在这项研究中,我们提出了一种用于计算下界的通用模型,以及方程式的数量与检查数量的数量级更为紧凑的公式。旨在防止学生每天参加超过一次考试的间隔软约束的计算结果是对迄今为止在较低范围上获得的结果的改进,并且我们的新公式产生的模型更加紧凑,其结果要优于现有公式。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号