首页> 外文期刊>Computers & operations research >A Branch-and-Bound Algorithm for a Class of Mixed Integer Linear Maximum Multiplicative Programs: A Bi-objective Optimization Approach
【24h】

A Branch-and-Bound Algorithm for a Class of Mixed Integer Linear Maximum Multiplicative Programs: A Bi-objective Optimization Approach

机译:一类混合整数线性最大乘法程序的分支定界算法:双目标优化方法

获取原文
获取原文并翻译 | 示例

摘要

We present a linear programming based branch-and-bound algorithm for a class of mixed integer optimization problems with a bi-linear objective function and linear constraints. This class of optimization problems can be viewed as a special case of the problem of optimization over the set of efficient solutions in bi-objective optimization. It is known that when there exists no integer decision variable, such a problem can be solved in polynomial time. In fact, in such a case, the problem can be transformed into a Second-Order Cone Program (SOCP) and so it can be solved efficiently by a commercial solver such as CPLEX SOCP solver. However, in a recent study, it is shown that such a problem can be solved even faster in practice by using a bi-objective linear programming based algorithm. So, in this study, we embed that algorithm in an effective branch-and-bound framework to solve mixed integer instances. We also develop several enhancement techniques including preprocessing and cuts. A computational study demonstrates that the proposed branch-and-bound algorithm outperforms a commercial mixed integer SOCP solver. Moreover, the effect of different branching and node selecting strategies is explored. (C) 2018 Elsevier Ltd. All rights reserved.
机译:针对一类具有双线性目标函数和线性约束的混合整数优化问题,我们提出了一种基于线性规划的分支定界算法。这类优化问题可以看作是双目标优化中有效解集上优化问题的特例。众所周知,当不存在整数判定变量时,可以在多项式时间内解决该问题。实际上,在这种情况下,该问题可以转换为二阶锥程序(SOCP),因此可以通过诸如CPLEX SOCP求解器之类的商用求解器有效地解决。但是,最近的研究表明,通过使用基于双目标线性规划的算法,可以在实践中更快地解决该问题。因此,在本研究中,我们将该算法嵌入到有效的分支定界框架中,以解决混合整数实例。我们还开发了多种增强技术,包括预处理和切割。计算研究表明,所提出的分支定界算法优于商用混合整数SOCP求解器。此外,探讨了不同分支和节点选择策略的效果。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号