首页> 外文期刊>Computers & operations research >Genetic programming for the prediction of insolvency in non-life insurance companies
【24h】

Genetic programming for the prediction of insolvency in non-life insurance companies

机译:遗传程序设计用于预测非寿险公司的破产

获取原文
获取原文并翻译 | 示例

摘要

Prediction of non-life insurance companies insolvency has arised as an important problem in the field of financial research, due to the necessity of protecting the general public whilst minimizing the costs associated to this problem, such as the effects on state insurance guaranty funds or the responsibilities for management and auditors. Most methods applied in the past to predict business failure in non-life insurance companies are traditional statistical techniques, which use financial ratios as explicative variables. However, these variables do not usually satisfy statistical assumptions, what complicates the application of the mentioned methods. Emergent statistical learning methods like neural networks or SVMs provide a successful approach in terms of error rate, but their character of black-box methods make the obtained results difficult to be interpreted and discussed. In this paper, we propose an approach to predict insolvency of non-life insurance companies based on the application of genetic programming (GP). GP is a class of evolutionary algorithms, which operates by codifying the solution of the problem as a population of LISP trees. This type of algorithm provides a diagnosis output in the form of a decision tree with given functions and data. We can treat it like a computer program which returns an answer depending on the input, and, more importantly, the tree can potentially be inspected, interpreted and re-used for different data sets. We have compared the performance of GP with other classifiers approaches, a Support Vector Machine and a Rough Set algorithm. The final purpose is to create an automatic diagnostic system for analysing non-insurance firms using their financial ratios as explicative variables.
机译:非寿险公司破产的预测已成为金融研究领域的一个重要问题,这是因为有必要保护公众,同时最大程度地降低与该问题相关的成本,例如对国家保险担保基金或保险公司的影响。管理层和审计师的责任。过去用于预测非寿险公司业务倒闭的大多数方法是传统的统计技术,这些技术使用财务比率作为解释变量。但是,这些变量通常不满足统计假设,这使所提及方法的应用变得复杂。诸如神经网络或SVM之类的新兴统计学习方法在错误率方面提供了一种成功的方法,但是其黑盒方法的特性使得所获得的结果难以解释和讨论。在本文中,我们提出了一种基于遗传程序设计(GP)的非寿险公司破产预测方法。 GP是一类进化算法,它通过将问题的解决方案编码为一组LISP树来进行操作。这种类型的算法以给定的功能和数据以决策树的形式提供诊断输出。我们可以将其视为计算机程序,该计算机程序根据输入返回答案,更重要的是,可以对树进行检查,解释并重新用于不同的数据集。我们将GP的性能与其他分类器方法,支持向量机和粗糙集算法进行了比较。最终目的是创建一个自动诊断系统,以使用其财务比率作为显性变量来分析非保险公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号