首页> 外文期刊>Computers & operations research >Towards probabilistic footy tipping: a hybrid approach utilising genetically defined neural networks and linear programming
【24h】

Towards probabilistic footy tipping: a hybrid approach utilising genetically defined neural networks and linear programming

机译:迈向概率足小费:使用遗传定义的神经网络和线性规划的混合方法

获取原文
获取原文并翻译 | 示例

摘要

Using readily available data from the 1992-1995 Australian Football League season, we have developed a model that will readily predict the winner of a game, together with the probability of that win. This model has been developed using a genetically modified neural network to calculate the likely winner, combined with a linear program optimisation to determine the probability of that occurring in the context of the tipping competition scoring regime. This model has then been tested against 484 tippers in a probabilistic tipping competition for the 2002 season. We have found that the performance of the combined neural network, linear program model compared most favorably with other model based tipping programs and human tippers.
机译:利用1992-1995澳大利亚足球联赛赛季的可用数据,我们开发了一种模型,可以轻松预测比赛的获胜者以及获胜的可能性。该模型是使用转基因神经网络来计算可能的获胜者,并与线性程序优化相结合来确定在小费竞赛得分机制的情况下发生该概率的可能性而开发的。然后,该模型在2002赛季的概率小费竞赛中针对484个小费进行了测试。我们发现,组合神经网络,线性程序模型的性能与其他基于模型的自卸程序和人工自卸车相比,效果最好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号