首页> 外文期刊>Computers & operations research >Efficient hybrid methods for global continuous optimization based on simulated annealing
【24h】

Efficient hybrid methods for global continuous optimization based on simulated annealing

机译:基于模拟退火的全局连续优化高效混合方法

获取原文
获取原文并翻译 | 示例

摘要

We introduce several hybrid methods for global continuous optimization. They combine simulated annealing and a local proximal bundle method. Traditionally, the simplest hybrid of a global and a local solver is to call the local solver after the global one, but this does not necessarily produce good results. Besides, using efficient gradient-based local solvers implies that the hybrid can only be applied to differentiable problems. We show several ways how to integrate the local solver as a genuine part of simulated annealing to enable both efficient and reliable solution processes. When using the proximal bundle method as a local solver, it is possible to solve even nondifferentiable problems. The numerical tests show that the hybridization can improve both the efficiency and the reliability of simulated annealing.
机译:我们介绍了几种用于全局连续优化的混合方法。他们结合了模拟退火和局部近端束法。传统上,全局求解器和本地求解器的最简单混合是在全局求解器之后调用本地求解器,但这不一定会产生良好的结果。此外,使用有效的基于梯度的局部求解器意味着混合只能应用于可微问题。我们展示了几种方法,如何将局部求解器集成为模拟退火的真实部分,以实现高效且可靠的求解过程。当使用近端束法作为局部求解器时,甚至可以解决不可微的问题。数值试验表明,杂交可以提高模拟退火的效率和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号