首页> 外文期刊>Computers & operations research >VNS and second order heuristics for the min-degree constrained minimum spanning tree problem
【24h】

VNS and second order heuristics for the min-degree constrained minimum spanning tree problem

机译:最小度约束最小生成树问题的VNS和二阶启发法

获取原文
获取原文并翻译 | 示例

摘要

Given an undirected graph with weights associated with its edges, the min-degree constrained minimum spanning tree (md-MST) problem consists in finding a minimum spanning tree of the given graph, imposing minimum degree constraints in all nodes except the leaves. This problem was recently proposed in Almeida et al. [Min-degree constrained minimum spanning tree problem: Complexity, proprieties and formulations. Operations Research Center, University of Lisbon, Working-paper no. 6; 2006], where its theoretical complexity was characterized and showed to be NP-hard.rnThe present paper discusses variable neighborhood search (VNS) metaheuristics addressing the md-MST. A so-called enhanced version of a second order (ESO) repetitive technique is also considered, in order to guide the search in both shaking and improvement phases of the VNS method. A Kruskal based greedy heuristic adapted to the md-MST is also presented, being used within the ESO framework. VNS randomized methodologies are also discussed. These are the first heuristics to the md-MST ever proposed in the literature. Computational experiments are conducted on instances adapted from benchmark ones used in the context of the well-known degree constraint minimum spanning tree problem. These experiments have shown that randomized VNS methods enclosing an ESO algorithm can produce very interesting results. In particular, that a simpler VNS randomized methodology might be taken into account when verv high dimensional instances are under consideration.
机译:给定一个无向图,其权重与其边缘相关联,最小度约束最小生成树(md-MST)问题在于找到给定图的最小生成树,在除叶子以外的所有节点中施加最小度约束。 Almeida等人最近提出了这个问题。 [最小度约束最小生成树问题:复杂性,专有性和公式。里斯本大学运筹研究中心,工作文件编号: 6; 2006],其理论上的复杂性被表征为NP-hard。rn本文讨论了针对md-MST的可变邻域搜索(VNS)元启发式方法。还考虑了所谓的二阶(ESO)重复技术的增强版本,以指导在VNS方法的抖动和改进阶段进行搜索。还提出了适用于md-MST的基于Kruskal的贪婪启发式方法,并在ESO框架内使用。还讨论了VNS随机方法。这些是文献中首次提出的md-MST启发式方法。计算实例是根据在众所周知的度数约束最小生成树问题中使用的基准实例改编的实例进行的。这些实验表明,包含ESO算法的随机VNS方法可以产生非常有趣的结果。特别是,在考虑虚拟高维实例时,可以考虑使用更简单的VNS随机方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号