首页> 外文期刊>Computers & operations research >A Comparison Of Scheduling Algorithms For Flexible Flow Shop Problems With Unrelated Parallel Machines, Setup Times, and Dual Criteria
【24h】

A Comparison Of Scheduling Algorithms For Flexible Flow Shop Problems With Unrelated Parallel Machines, Setup Times, and Dual Criteria

机译:无关并行机,建立时间和对偶准则的柔性流水车间调度算法的比较

获取原文
获取原文并翻译 | 示例

摘要

This paper considers a flexible flow shop scheduling problem, where at least one production stage is made up of unrelated parallel machines. Moreover, sequence- and machine-dependent setup times are given. The objective is to find a schedule that minimizes a convex sum of makespan and the number of tardy jobs in a static flexible flow shop environment. For this problem, a 0-1 mixed integer program is formulated. The problem is, however, a combinatorial optimization problem which is too difficult to be solved optimally for large problem sizes, and hence heuristics are used to obtain good solutions in a reasonable time. The proposed constructive heuristics for sequencing the jobs start with the generation of the representatives of the operating time for each operation. Then some dispatching rules and flow shop makespan heuristics are developed. To improve the solutions obtained by the constructive algorithms, fast polynomial heuristic improvement algorithms based on shift moves and pairwise interchanges of jobs are applied. In addition, metaheuristics are suggested, namely simulated annealing (SA), tabu search (TS) and genetic algorithms. The basic parameters of each metaheuristic are briefly discussed in this paper. The performance of the heuristics is compared relative to each other on a set of test problems with up to 50 jobs and 20 stages and with an optimal solution for small-size problems. We have found that among the constructive algorithms the insertion-based approach is superior to the others, whereas the proposed SA algorithms are better than TS and genetic algorithms among the iterative metaheuristic algorithms.
机译:本文考虑了一种灵活的流水车间调度问题,其中至少一个生产阶段由不相关的并行机组成。此外,还给出了与序列和机器相关的设置时间。目的是找到在静态灵活的流水车间环境中最大程度地减少工期的凸和和工作时间的计划。针对该问题,制定了0-1混合整数程序。然而,问题是组合优化问题,该组合优化问题对于大问题规模而言太难解决了,因此启发式方法可用于在合理的时间内获得良好的解决方案。提议的用于对作业进行排序的构造启​​发式方法从生成每个操作的操作时间代表开始。然后,开发了一些调度规则和流水车间makepan启发式算法。为了改进由构造算法获得的解,应用了基于移位移动和作业的成对互换的快速多项式启发式改进算法。此外,还提出了元启发法,即模拟退火(SA),禁忌搜索(TS)和遗传算法。本文简要讨论了每种元启发式方法的基本参数。在一组最多50个工作和20个阶段以及针对小型问题的最佳解决方案的一组测试问题上,将启发式方法的性能进行了相互比较。我们发现,在构造算法中,基于插入的方法优于其他方法,而在迭代元启发式算法中,所提出的SA算法优于TS和遗传算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号